BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25839774)

  • 21. Fabrication of separable microneedles with phase change coating for NIR-triggered transdermal delivery of metformin on diabetic rats.
    Liu T; Jiang G; Song G; Zhu J; Yang Y
    Biomed Microdevices; 2020 Jan; 22(1):12. PubMed ID: 31912303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional Graphene-Oxide-Reinforced Dissolvable Polymeric Microneedles for Transdermal Drug Delivery.
    Chen Y; Yang Y; Xian Y; Singh P; Feng J; Cui S; Carrier A; Oakes K; Luan T; Zhang X
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):352-360. PubMed ID: 31825580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-Infrared Light-Activatable Microneedle System for Treating Superficial Tumors by Combination of Chemotherapy and Photothermal Therapy.
    Chen MC; Lin ZW; Ling MH
    ACS Nano; 2016 Jan; 10(1):93-101. PubMed ID: 26592739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer.
    Li J; Pu K
    Acc Chem Res; 2020 Apr; 53(4):752-762. PubMed ID: 32027481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Remotely triggerable drug delivery systems.
    Timko BP; Dvir T; Kohane DS
    Adv Mater; 2010 Nov; 22(44):4925-43. PubMed ID: 20818618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NIR-triggered drug release from switchable rotaxane-functionalized silica-covered Au nanorods.
    Li M; Yan H; Teh C; Korzh V; Zhao Y
    Chem Commun (Camb); 2014 Sep; 50(68):9745-8. PubMed ID: 25019373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optically modulated cancer therapeutic delivery: past, present and future.
    Strong LE; West JL
    Ther Deliv; 2015; 6(5):545-58. PubMed ID: 26001172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-infrared light-responsive nanomaterials for cancer theranostics.
    Kim H; Chung K; Lee S; Kim DH; Lee H
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(1):23-45. PubMed ID: 25903643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery.
    Park JH; Yoon YK; Choi SO; Prausnitz MR; Allen MG
    IEEE Trans Biomed Eng; 2007 May; 54(5):903-13. PubMed ID: 17518288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uniform dispersion of lanthanum hexaboride nanoparticles in a silica thin film: synthesis and optical properties.
    Jiang F; Leong YK; Saunders M; Martyniuk M; Faraone L; Keating A; Dell JM
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5833-8. PubMed ID: 23057614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A minimally invasive microchip for transdermal injection/sampling applications.
    Strambini LM; Longo A; Diligenti A; Barillaro G
    Lab Chip; 2012 Sep; 12(18):3370-9. PubMed ID: 22773092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of carbon nanotube-polyimide composite hollow microneedles for transdermal drug delivery.
    Lyon BJ; Aria AI; Gharib M
    Biomed Microdevices; 2014 Dec; 16(6):879-86. PubMed ID: 25095899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light-Activable On-Demand Release of Nano-Antibiotic Platforms for Precise Synergy of Thermochemotherapy on Periodontitis.
    Zhang L; Wang Y; Wang C; He M; Wan J; Wei Y; Zhang J; Yang X; Zhao Y; Zhang Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3354-3362. PubMed ID: 31872756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats.
    Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J
    J Mater Chem B; 2017 Dec; 5(48):9507-9513. PubMed ID: 32264565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. External manipulation of nanostructure in photoresponsive lipid depot matrix to control and predict drug release in vivo.
    Fong WK; Hanley TL; Thierry B; Hawley A; Boyd BJ; Landersdorfer CB
    J Control Release; 2016 Apr; 228():67-73. PubMed ID: 26924351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery.
    Park JH; Allen MG; Prausnitz MR
    J Control Release; 2005 May; 104(1):51-66. PubMed ID: 15866334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microneedles for transdermal drug delivery.
    Prausnitz MR
    Adv Drug Deliv Rev; 2004 Mar; 56(5):581-7. PubMed ID: 15019747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microneedles: a valuable physical enhancer to increase transdermal drug delivery.
    Escobar-Chávez JJ; Bonilla-Martínez D; Villegas-González MA; Molina-Trinidad E; Casas-Alancaster N; Revilla-Vázquez AL
    J Clin Pharmacol; 2011 Jul; 51(7):964-77. PubMed ID: 21148047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A photoCORM nanocarrier for CO release using NIR light.
    Pierri AE; Huang PJ; Garcia JV; Stanfill JG; Chui M; Wu G; Zheng N; Ford PC
    Chem Commun (Camb); 2015 Feb; 51(11):2072-5. PubMed ID: 25532627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles.
    Sivakumar S; van Veggel FC; Raudsepp M
    J Am Chem Soc; 2005 Sep; 127(36):12464-5. PubMed ID: 16144374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.