BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25839774)

  • 41. Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery.
    Roxhed N; Griss P; Stemme G
    Biomed Microdevices; 2008 Apr; 10(2):271-9. PubMed ID: 17940907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A near infrared light-triggerable modular formulation for the delivery of small biomolecules.
    Francisco V; Lino M; Ferreira L
    J Nanobiotechnology; 2019 Sep; 17(1):97. PubMed ID: 31526377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments.
    Kosoglu MA; Hood RL; Chen Y; Xu Y; Rylander MN; Rylander CG
    J Biomech Eng; 2010 Sep; 132(9):091014. PubMed ID: 20815648
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes.
    Noh MS; Lee S; Kang H; Yang JK; Lee H; Hwang D; Lee JW; Jeong S; Jang Y; Jun BH; Jeong DH; Kim SK; Lee YS; Cho MH
    Biomaterials; 2015 Mar; 45():81-92. PubMed ID: 25662498
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential of biodegradable microneedles as a transdermal delivery vehicle for lidocaine.
    Nayak A; Das DB
    Biotechnol Lett; 2013 Sep; 35(9):1351-63. PubMed ID: 23690030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hollow polymer microneedles array resistance and insertion tests.
    Lhernould MS; Deleers M; Delchambre A
    Int J Pharm; 2015 Mar; 480(1-2):152-7. PubMed ID: 25595569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics.
    Fong WK; Negrini R; Vallooran JJ; Mezzenga R; Boyd BJ
    J Colloid Interface Sci; 2016 Dec; 484():320-339. PubMed ID: 27623190
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Current advances in the fabrication of microneedles for transdermal delivery.
    Indermun S; Luttge R; Choonara YE; Kumar P; du Toit LC; Modi G; Pillay V
    J Control Release; 2014 Jul; 185():130-8. PubMed ID: 24806483
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gold Nanorod Mediated Chlorhexidine Microparticle Formation and Near-Infrared Light Induced Release.
    Luo D; Hasan MS; Shahid S; Khlebtsov BN; Cattell MJ; Sukhorukov GB
    Langmuir; 2017 Aug; 33(32):7982-7993. PubMed ID: 28707889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Near-infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface.
    Luo R; Cao Y; Shi P; Chen CH
    Small; 2014 Dec; 10(23):4886-94. PubMed ID: 25059988
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Implantable polymeric microneedles with phototriggerable properties as a patient-controlled transdermal analgesia system.
    Chen MC; Chan HA; Ling MH; Su LC
    J Mater Chem B; 2017 Jan; 5(3):496-503. PubMed ID: 32263665
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery.
    Jin CY; Han MH; Lee SS; Choi YH
    Biomed Microdevices; 2009 Dec; 11(6):1195-203. PubMed ID: 19609679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Near-infrared light-responsive graphene oxide composite multilayer capsules: a novel route for remote controlled drug delivery.
    Kurapati R; Raichur AM
    Chem Commun (Camb); 2013 Jan; 49(7):734-6. PubMed ID: 23232330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymer microneedles for transdermal drug delivery.
    Lee JW; Han MR; Park JH
    J Drug Target; 2013 Apr; 21(3):211-223. PubMed ID: 23167609
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Online Spectroscopic Monitoring of Drug Release Kinetics from Nanostructured Dual-Stimuli-Responsive Conducting Polymer.
    Alizadeh N; Shamaeli E; Fazili M
    Pharm Res; 2017 Jan; 34(1):113-120. PubMed ID: 27761707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On-demand delivery of protein drug from 3D-printed implants.
    Kim D; Wu Y; Oh YK
    J Control Release; 2022 Sep; 349():133-142. PubMed ID: 35787916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Repetitive on-demand drug release from polymeric matrices containing a macroscopic spherical iron core.
    Rovers SA; Kemmere MF; Keurentjes JTF; Hoogenboom R
    J Mater Sci Mater Med; 2017 Sep; 28(10):163. PubMed ID: 28914395
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release.
    Niu N; He F; Ma P; Gai S; Yang G; Qu F; Wang Y; Xu J; Yang P
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3250-62. PubMed ID: 24521281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chitosan microneedle patches for sustained transdermal delivery of macromolecules.
    Chen MC; Ling MH; Lai KY; Pramudityo E
    Biomacromolecules; 2012 Dec; 13(12):4022-31. PubMed ID: 23116140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Galactose targeted pH-responsive copolymer conjugated with near infrared fluorescence probe for imaging of intelligent drug delivery.
    Fu L; Sun C; Yan L
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):2104-15. PubMed ID: 25569169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.