BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25839774)

  • 61. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions.
    Ashraf MW; Tayyaba S; Nisar A; Afzulpurkar N; Bodhale DW; Lomas T; Poyai A; Tuantranont A
    Cardiovasc Eng; 2010 Sep; 10(3):91-108. PubMed ID: 20730492
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose.
    Lee K; Lee CY; Jung H
    Biomaterials; 2011 Apr; 32(11):3134-40. PubMed ID: 21292317
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery.
    Al-Qallaf B; Das DB
    Ann N Y Acad Sci; 2009 Apr; 1161():83-94. PubMed ID: 19426308
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In vitro transdermal delivery of therapeutic antibodies using maltose microneedles.
    Li G; Badkar A; Nema S; Kolli CS; Banga AK
    Int J Pharm; 2009 Feb; 368(1-2):109-15. PubMed ID: 18996461
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery.
    Li C; Yang D; Ma P; Chen Y; Wu Y; Hou Z; Dai Y; Zhao J; Sui C; Lin J
    Small; 2013 Dec; 9(24):4150-9. PubMed ID: 23843254
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fine and Clean Photothermally Controlled NIR Drug Delivery from Biocompatible Nickel-bis(dithiolene)-Containing Liposomes.
    Mebrouk K; Ciancone M; Vives T; Cammas-Marion S; Benvegnu T; Le Goff-Gaillard C; Arlot-Bonnemains Y; Fourmigué M; Camerel F
    ChemMedChem; 2017 Nov; 12(21):1753-1758. PubMed ID: 28902984
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nanostructured chitosan-polyphenolic patch for remote NIR-photothermal controlled dermal drug delivery.
    Rahman M; Chowdhury F; Uddin K; Ahmed KS; Hossain H; Jain P; Reza HM; Lee K; Sharker SM
    Int J Biol Macromol; 2023 Jun; 241():124701. PubMed ID: 37137352
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery.
    Choi CK; Lee KJ; Youn YN; Jang EH; Kim W; Min BK; Ryu W
    Eur J Pharm Biopharm; 2013 Feb; 83(2):224-33. PubMed ID: 23201049
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for near-infrared photothermal ablation of bacteria.
    Lai BH; Chen DH
    Acta Biomater; 2013 Jul; 9(7):7573-9. PubMed ID: 23535232
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy.
    Yin W; Yan L; Yu J; Tian G; Zhou L; Zheng X; Zhang X; Yong Y; Li J; Gu Z; Zhao Y
    ACS Nano; 2014 Jul; 8(7):6922-33. PubMed ID: 24905027
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Super-short solid silicon microneedles for transdermal drug delivery applications.
    Li WZ; Huo MR; Zhou JP; Zhou YQ; Hao BH; Liu T; Zhang Y
    Int J Pharm; 2010 Apr; 389(1-2):122-9. PubMed ID: 20096759
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A simple method of microneedle array fabrication for transdermal drug delivery.
    Kochhar JS; Goh WJ; Chan SY; Kang L
    Drug Dev Ind Pharm; 2013 Feb; 39(2):299-309. PubMed ID: 22519721
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release.
    Li W; Wang J; Ren J; Qu X
    Adv Mater; 2013 Dec; 25(46):6737-43. PubMed ID: 24123218
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nano-structured polymer-silica composite derived from a marine diatom via deactivation enhanced atom transfer radical polymerization grafting.
    O'Connor J; Lang Y; Chao J; Cao H; Collins L; Rodriguez BJ; Dockery P; Finn DP; Wang W; Pandit A
    Small; 2014 Feb; 10(3):469-73. PubMed ID: 24038912
    [No Abstract]   [Full Text] [Related]  

  • 75. Near-infrared light-responsive vesicles of Au nanoflowers.
    He J; Zhang P; Babu T; Liu Y; Gong J; Nie Z
    Chem Commun (Camb); 2013 Jan; 49(6):576-8. PubMed ID: 23223190
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.
    Nguyen TM; Lee S; Lee SB
    Nanomedicine (Lond); 2014 Oct; 9(15):2263-72. PubMed ID: 24405462
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots.
    Di J; Yao S; Ye Y; Cui Z; Yu J; Ghosh TK; Zhu Y; Gu Z
    ACS Nano; 2015 Sep; 9(9):9407-15. PubMed ID: 26258579
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers.
    Kim SH; Tan JP; Fukushima K; Nederberg F; Yang YY; Waymouth RM; Hedrick JL
    Biomaterials; 2011 Aug; 32(23):5505-14. PubMed ID: 21529935
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thermosensitive Microneedles Capable of On Demand Insulin Release for Precise Diabetes Treatment.
    Jiang S; Bian J; Shi X; Hu Y
    Macromol Biosci; 2023 Sep; 23(9):e2300018. PubMed ID: 37114319
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Photoresponsive Drug/Gene Delivery Systems.
    Zhou Y; Ye H; Chen Y; Zhu R; Yin L
    Biomacromolecules; 2018 Jun; 19(6):1840-1857. PubMed ID: 29701952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.