BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25839833)

  • 1. The specific reactive surface area of granular zero-valent iron in metal contaminant removal: Column experiments and modelling.
    Statham TM; Mason LR; Mumford KA; Stevens GW
    Water Res; 2015 Jun; 77():24-34. PubMed ID: 25839833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.
    Moraci N; Calabrò PS
    J Environ Manage; 2010 Nov; 91(11):2336-41. PubMed ID: 20643500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phenomenological reaction kinetic model for Cu removal from aqueous solutions by zero-valent iron (ZVI).
    Yoshino H; Kurosu S; Yamaguchi R; Kawase Y
    Chemosphere; 2018 Jun; 200():542-553. PubMed ID: 29501891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water.
    Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT
    Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced paramagnetic Cu²⁺ ions removal by coupling a weak magnetic field with zero valent iron.
    Jiang X; Qiao J; Lo IM; Wang L; Guan X; Lu Z; Zhou G; Xu C
    J Hazard Mater; 2015; 283():880-7. PubMed ID: 25464332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Pb(II), Cd(II), Cu(II) and trichloroethylene from water by Nanofer ZVI.
    Eglal MM; Ramamurthy AS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(9):901-12. PubMed ID: 26061203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Characteristics and mechanism of Cu2+ removal by zero-valent iron (ZVI) from aqueous solution].
    Chen YW; Wang JL
    Huan Jing Ke Xue; 2009 Nov; 30(11):3353-7. PubMed ID: 20063753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-valent iron for the abatement of arsenate and selenate from flowback water of hydraulic fracturing.
    Sun Y; Chen SS; Tsang DCW; Graham NJD; Ok YS; Feng Y; Li XD
    Chemosphere; 2017 Jan; 167():163-170. PubMed ID: 27718428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance enhancement of zero valent iron based systems using depassivators: Optimization and kinetic mechanisms.
    Ansaf KVK; Ambika S; Nambi IM
    Water Res; 2016 Oct; 102():436-444. PubMed ID: 27395028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale zero-valent iron for the removal of Zn2+, Zn(II)-EDTA and Zn(II)-citrate from aqueous solutions.
    Kržišnik N; Mladenovič A; Škapin AS; Škrlep L; Ščančar J; Milačič R
    Sci Total Environ; 2014 Apr; 476-477():20-8. PubMed ID: 24463023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amicarbazone degradation promoted by ZVI-activated persulfate: study of relevant variables for practical application.
    Graça CAL; Fugita LTN; de Velosa AC; Teixeira ACSC
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5474-5483. PubMed ID: 29214480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron.
    Liang L; Yang W; Guan X; Li J; Xu Z; Wu J; Huang Y; Zhang X
    Water Res; 2013 Oct; 47(15):5846-55. PubMed ID: 23899877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI.
    Mayacela Rojas CM; Rivera Velásquez MF; Tavolaro A; Molinari A; Fallico C
    Int J Environ Res Public Health; 2017 Jun; 14(7):. PubMed ID: 28672800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of thiobencarb in aqueous solution by zero valent iron.
    Nurul Amin M; Kaneco S; Kato T; Katsumata H; Suzuki T; Ohta K
    Chemosphere; 2008 Jan; 70(3):511-5. PubMed ID: 17963816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014).
    Guan X; Sun Y; Qin H; Li J; Lo IM; He D; Dong H
    Water Res; 2015 May; 75():224-48. PubMed ID: 25770444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems.
    Dries J; Bastiaens L; Springael D; Kuypers S; Agathos SN; Diels L
    Water Res; 2005 Sep; 39(15):3531-40. PubMed ID: 16095659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The removal efficiency and long-term hydraulic behaviour of zero valent iron/lapillus mixtures for the simultaneous removal of Cu
    Bilardi S; Calabrò PS; Moraci N
    Sci Total Environ; 2019 Jul; 675():490-500. PubMed ID: 31030155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater.
    Calabrò PS; Moraci N; Suraci P
    J Hazard Mater; 2012 Mar; 207-208():111-6. PubMed ID: 21885195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.