These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Elucidating the kinetics of sodium fluorescein for fluorescence-guided surgery of glioma. Folaron M; Strawbridge R; Samkoe KS; Serafini CE; Roberts DW; Davis SC J Neurosurg; 2019 Sep; 131(3):724-734. PubMed ID: 30192200 [TBL] [Abstract][Full Text] [Related]
4. Fluorescein-Guided Surgery for High-Grade Glioma Resection: An Intraoperative "Contrast-Enhancer". Catapano G; Sgulò FG; Seneca V; Lepore G; Columbano L; di Nuzzo G World Neurosurg; 2017 Aug; 104():239-247. PubMed ID: 28512039 [TBL] [Abstract][Full Text] [Related]
5. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas. Mert A; Kiesel B; Wöhrer A; Martínez-Moreno M; Minchev G; Furtner J; Knosp E; Wolfsberger S; Widhalm G Neurosurg Focus; 2015 Jan; 38(1):E4. PubMed ID: 25552284 [TBL] [Abstract][Full Text] [Related]
6. A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. Lau D; Hervey-Jumper SL; Chang S; Molinaro AM; McDermott MW; Phillips JJ; Berger MS J Neurosurg; 2016 May; 124(5):1300-9. PubMed ID: 26544781 [TBL] [Abstract][Full Text] [Related]
7. Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image-guided resection. Zhang J; Zhuang DX; Yao CJ; Lin CP; Wang TL; Qin ZY; Wu JS J Neurosurg; 2016 Jun; 124(6):1585-93. PubMed ID: 26636387 [TBL] [Abstract][Full Text] [Related]
8. [Experimental study of detection of brain tumor at surgery using fluorescent imaging under a surgical microscope after fluorescein administration]. Kabuto M; Kubota T; Kobayashi H; Ishii H; Nakagawa T; Kawai H; Kitai R; Kodera T; Kaneko M No To Shinkei; 1997 Mar; 49(3):261-5. PubMed ID: 9125731 [TBL] [Abstract][Full Text] [Related]
9. Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery--a feasibility study. Schebesch KM; Proescholdt M; Höhne J; Hohenberger C; Hansen E; Riemenschneider MJ; Ullrich W; Doenitz C; Schlaier J; Lange M; Brawanski A Acta Neurochir (Wien); 2013 Apr; 155(4):693-9. PubMed ID: 23430234 [TBL] [Abstract][Full Text] [Related]
10. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. Sanai N; Snyder LA; Honea NJ; Coons SW; Eschbacher JM; Smith KA; Spetzler RF J Neurosurg; 2011 Oct; 115(4):740-8. PubMed ID: 21761971 [TBL] [Abstract][Full Text] [Related]
11. Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. Li Y; Rey-Dios R; Roberts DW; Valdés PA; Cohen-Gadol AA World Neurosurg; 2014; 82(1-2):175-85. PubMed ID: 23851210 [TBL] [Abstract][Full Text] [Related]
12. Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma. Tsugu A; Ishizaka H; Mizokami Y; Osada T; Baba T; Yoshiyama M; Nishiyama J; Matsumae M World Neurosurg; 2011; 76(1-2):120-7. PubMed ID: 21839963 [TBL] [Abstract][Full Text] [Related]
13. Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Coburger J; Engelke J; Scheuerle A; Thal DR; Hlavac M; Wirtz CR; König R Neurosurg Focus; 2014 Feb; 36(2):E3. PubMed ID: 24484256 [TBL] [Abstract][Full Text] [Related]
14. Platelet-derived growth factor receptor-beta is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Plate KH; Breier G; Farrell CL; Risau W Lab Invest; 1992 Oct; 67(4):529-34. PubMed ID: 1434531 [TBL] [Abstract][Full Text] [Related]
15. Potential application of a handheld confocal endomicroscope imaging system using a variety of fluorophores in experimental gliomas and normal brain. Martirosyan NL; Georges J; Eschbacher JM; Cavalcanti DD; Elhadi AM; Abdelwahab MG; Scheck AC; Nakaji P; Spetzler RF; Preul MC Neurosurg Focus; 2014 Feb; 36(2):E16. PubMed ID: 24484254 [TBL] [Abstract][Full Text] [Related]
16. Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. Feigl GC; Ritz R; Moraes M; Klein J; Ramina K; Gharabaghi A; Krischek B; Danz S; Bornemann A; Liebsch M; Tatagiba MS J Neurosurg; 2010 Aug; 113(2):352-7. PubMed ID: 19911888 [TBL] [Abstract][Full Text] [Related]
17. Experimental and clinical study of detection of glioma at surgery using fluorescent imaging by a surgical microscope after fluorescein administration. Kabuto M; Kubota T; Kobayashi H; Nakagawa T; Ishii H; Takeuchi H; Kitai R; Kodera T Neurol Res; 1997 Feb; 19(1):9-16. PubMed ID: 9090631 [TBL] [Abstract][Full Text] [Related]
18. Use of intraoperative fluorescein sodium fluorescence to improve the accuracy of tissue diagnosis during stereotactic needle biopsy of high-grade gliomas. Rey-Dios R; Hattab EM; Cohen-Gadol AA Acta Neurochir (Wien); 2014 Jun; 156(6):1071-5; discussion 1075. PubMed ID: 24770732 [TBL] [Abstract][Full Text] [Related]
19. Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: preliminary results in 12 cases. Acerbi F; Broggi M; Eoli M; Anghileri E; Cuppini L; Pollo B; Schiariti M; Visintini S; Orsi C; Franzini A; Broggi G; Ferroli P Acta Neurochir (Wien); 2013 Jul; 155(7):1277-86. PubMed ID: 23661063 [TBL] [Abstract][Full Text] [Related]
20. Transferrin receptor 1 targeted optical imaging for identifying glioma margin in mouse models. Ni XR; Zhao YY; Cai HP; Yu ZH; Wang J; Chen FR; Yu YJ; Feng GK; Chen ZP J Neurooncol; 2020 Jun; 148(2):245-258. PubMed ID: 32405996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]