BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25840018)

  • 1. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification.
    Wang X; Jiang A; Hou T; Li H; Li F
    Biosens Bioelectron; 2015 Aug; 70():324-9. PubMed ID: 25840018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive enzyme-free fluorescent detection of VEGF
    Zhou Q; Yan H; Ran F; Cao J; Chen L; Shang B; Chen H; Wei J; Chen Q
    RSC Adv; 2018 Jul; 8(46):25955-25960. PubMed ID: 35548700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UIO66 low background signal and fluorescence synergism strategy for highly sensitive detection of Salmonella typhimurium.
    Dou S; Zhou S; Wang H; Liu M; Wang Y; Sun X; Guo Y
    Talanta; 2024 Jul; 274():126013. PubMed ID: 38569373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive fluorescent aptasensing of tobramycin on graphene oxide coupling strand displacement amplification and hybridization chain reaction.
    Li D; Ling S; Meng D; Zhou B; Liang P; Lv B
    Int J Biol Macromol; 2022 Nov; 220():1287-1293. PubMed ID: 36037911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Powered Biosensing System with Multivariate Signal Amplification for Real-Time Amplified Detection of PDGF-BB.
    Wang F; Wang P; Yang H; Cai R; Tan W
    Anal Chem; 2023 Nov; 95(44):16359-16365. PubMed ID: 37889605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of dual models multivalent activatable aptamers based on HCR and RCA for ultrasensitive detection of Salmonella typhimurium.
    Dou S; Liu M; Wang H; Zhou S; Marrazza G; Guo Y; Sun X; Darwish IA
    Talanta; 2024 Aug; 275():126101. PubMed ID: 38631268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A label free fluorescent aptamer sensor based on the combined action of Graphene oxide and SYBR Green I for the detection of Aflatoxin B1.
    Hu M; Cheng M; Wang N; Sang Y; Dong Y; Wang L
    IEEE Trans Nanobioscience; 2024 May; PP():. PubMed ID: 38768008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy.
    Xiang Y; Zhang Y; Qian X; Chai Y; Wang J; Yuan R
    Biosens Bioelectron; 2010 Jul; 25(11):2539-42. PubMed ID: 20452761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-signal and one-step monitoring of Staphylococcus aureus in milk using hybridization chain reaction based fluorescent sensor.
    Zhang Y; Gao L; Han J; Miao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123191. PubMed ID: 37517267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A binding-triggered hybridization chain reaction cascade multi-site activated CRISPR/Cas12a signal amplification strategy for sensitive detection of α-synuclein.
    Wan Z; Lu J; Lu L; Zhao W; Jiang W
    Analyst; 2024 May; ():. PubMed ID: 38757739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized nanopores based on hybridization chain reaction: Fabrication and microRNA sensing.
    Qiu X; Dong J; Dai Q; Huang M; Li Y
    Biosens Bioelectron; 2023 Nov; 240():115594. PubMed ID: 37660458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing a Hybrid Chain Reaction Probe for Multiplex Transcripts Assay with High-Level Imaging.
    Cao D; Qin X; Wang W; Zhang Y; Peng S; Gong H; Luo Q; Yang J
    ACS Nano; 2024 Jan; 18(1):618-629. PubMed ID: 38154106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an autonomously concatenated hybridization chain reaction for signal amplification and intracellular imaging.
    Wei J; Gong X; Wang Q; Pan M; Liu X; Liu J; Xia F; Wang F
    Chem Sci; 2018 Jan; 9(1):52-61. PubMed ID: 29629073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Graphene Oxide-based Assay for Sensitive Osteonecrosis of the Femoral Head (ONFH) related microRNA Detection via Exonuclease-III Assisted Dual Signal Cycle.
    Yu J; Han K
    Mol Biotechnol; 2023 Oct; ():. PubMed ID: 37851192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel label-free capillary electrophoresis LED-induced fluorescence platform based on catalytic hairpin assembly for sensitive detection of multiple circulating tumor DNA.
    Sun Y; He S; Peng Y; Liu M; Xu D
    Analyst; 2024 Feb; 149(5):1548-1556. PubMed ID: 38284430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A enzyme-free fluorescence quenching sensor for amplified detection of kanamycin in milk based on competitive triggering strategies.
    Bao Y; Sang Y; Yan X; Hu M; Wang N; Dong Y; Wang L
    RSC Adv; 2024 Jun; 14(27):19076-19082. PubMed ID: 38873552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Non-Enzymatic and Label-Free Fluorescence Bioassay for Ultrasensitive Detection of PSA.
    Sun Y; Wang C; Zhang H; Zhang Y; Zhang G
    Molecules; 2019 Feb; 24(5):. PubMed ID: 30813571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear hybridization chain reaction-based functional DNA nanostructure assembly for biosensing, bioimaging applications.
    Zeng Z; Zhou R; Sun R; Zhang X; Cheng Z; Chen C; Zhu Q
    Biosens Bioelectron; 2021 Feb; 173():112814. PubMed ID: 33197767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability.
    Choi HM; Beck VA; Pierce NA
    ACS Nano; 2014 May; 8(5):4284-94. PubMed ID: 24712299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-triggered enzyme-free amplification for highly efficient AND-gated bioimaging in living cells.
    Chen J; Yu S; Qian Z; He K; Li B; Cao Y; Tang K; Yu S; Wu YX
    Analyst; 2023 Nov; 148(23):5963-5971. PubMed ID: 37867382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.