BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 25840036)

  • 1. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite.
    Chen D; Zhao H; Hu G; Qi T; Yu H; Zhang G; Wang L; Wang W
    J Hazard Mater; 2015 Aug; 294():35-40. PubMed ID: 25840036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective recovery of vanadium and scandium by ion exchange with D201 and solvent extraction using P507 from hydrochloric acid leaching solution of red mud.
    Zhu X; Li W; Tang S; Zeng M; Bai P; Chen L
    Chemosphere; 2017 May; 175():365-372. PubMed ID: 28236706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process development for recovery of vanadium and nickel from an industrial solid waste by a leaching-solvent extraction technique.
    Barik SP; Park KH; Nam CW
    J Environ Manage; 2014 Dec; 146():22-28. PubMed ID: 25156262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes.
    Chen D; Zhao L; Liu Y; Qi T; Wang J; Wang L
    J Hazard Mater; 2013 Jan; 244-245():588-95. PubMed ID: 23177244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method.
    Zhao Z; Guo M; Zhang M
    J Hazard Mater; 2015 Apr; 286():402-9. PubMed ID: 25603289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic ozonation with vanadium oxide-doped TiO
    Tak H; Chung Y; Kim GY; Kim H; Lee J; Kang J; Do QC; Bae BU; Kang S
    Chemosphere; 2022 Nov; 306():135646. PubMed ID: 35817184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes.
    Navarro R; Guzman J; Saucedo I; Revilla J; Guibal E
    Waste Manag; 2007; 27(3):425-38. PubMed ID: 16563726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The decolorization of Acid Orange II in non-homogeneous Fenton reaction catalyzed by natural vanadium-titanium magnetite.
    Liang X; Zhong Y; Zhu S; Zhu J; Yuan P; He H; Zhang J
    J Hazard Mater; 2010 Sep; 181(1-3):112-20. PubMed ID: 20554111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Recovery of Vanadium and Titanium from Domestic Titanomagnetite Concentrate Using Molten Salt Roasting and Water Leaching.
    Trinh HB; Kim S; Lee J; Oh S
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site.
    Yang J; Tang Y; Yang K; Rouff AA; Elzinga EJ; Huang JH
    J Hazard Mater; 2014 Jan; 264():498-504. PubMed ID: 24268537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient recovery of molybdenum from spent catalyst by an optimized process.
    Zhang M; Song H; Zheng C; Lin Z; Liu Y; Wu W; Gao X
    J Air Waste Manag Assoc; 2020 Oct; 70(10):971-979. PubMed ID: 32633619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries.
    El-Nadi YA; Daoud JA; Aly HF
    J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum separation by sulfuric acid leaching-solvent extraction from Al-bearing LiFePO
    Wu Y; Zhou K; Zhang X; Peng C; Jiang Y; Chen W
    Waste Manag; 2022 May; 144():303-312. PubMed ID: 35427902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous recovery of vanadium and nickel from power plant fly-ash: optimization of parameters using response surface methodology.
    Nazari E; Rashchi F; Saba M; Mirazimi SM
    Waste Manag; 2014 Dec; 34(12):2687-96. PubMed ID: 25269818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping.
    Qifeng W; Xiulian R; Jingjing G; Yongxing C
    J Hazard Mater; 2016 Mar; 304():1-9. PubMed ID: 26546698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.
    Baba AA; Adekola AF; Bale RB
    J Hazard Mater; 2009 Nov; 171(1-3):838-44. PubMed ID: 19596514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable Selective Recovery of Sulfuric Acid and Vanadium from Acidic Wastewater with Two-Step Solvent Extraction.
    Zhu X; Ma C; Li W
    ACS Omega; 2023 Aug; 8(30):27127-27138. PubMed ID: 37546607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaching and purification of indium from waste liquid crystal display panel after hydrothermal pretreatment: Optimum conditions determination and kinetic analysis.
    Cao Y; Li F; Li G; Huang J; Zhu H; He W
    Waste Manag; 2020 Feb; 102():635-644. PubMed ID: 31785523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.
    Sahu KK; Agrawal A; Mishra D
    J Environ Manage; 2013 Aug; 125():68-73. PubMed ID: 23644591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag.
    Xiang J; Huang Q; Lv X; Bai C
    J Hazard Mater; 2017 Aug; 336():1-7. PubMed ID: 28463734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.