BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25840046)

  • 1. Shell-Thickness Controlled Semiconductor-Metal Transition in Si-SiC Core-Shell Nanowires.
    Amato M; Rurali R
    Nano Lett; 2015 May; 15(5):3425-30. PubMed ID: 25840046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-State Limited Nucleation of NiSi/SiC Core-Shell Nanowires by Hot-Wire Chemical Vapor Deposition.
    Alizadeh M; Binti Hamzan N; Ooi PC; Bin Omar MF; Dee CF; Goh BT
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30813502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Electron Mobility in Nonplanar Tensile Strained Si Epitaxially Grown on Si
    Wen F; Tutuc E
    Nano Lett; 2018 Jan; 18(1):94-100. PubMed ID: 29185763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional Varied Core-Shell InGaP Nanowires Grown by Metal-Organic Chemical Vapor Deposition.
    Gao H; Sun W; Sun Q; Tan HH; Jagadish C; Zou J
    Nano Lett; 2019 Jun; 19(6):3782-3788. PubMed ID: 31117755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Si and Ge based metallic core/shell nanowires for nano-electronic device applications.
    Bhuyan PD; Kumar A; Sonvane Y; Gajjar PN; Magri R; Gupta SK
    Sci Rep; 2018 Nov; 8(1):16885. PubMed ID: 30442936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core-Shell Nanowires As Revealed by in situ Transmission Electron Microscopy.
    Zhang C; Kvashnin DG; Bourgeois L; Fernando JFS; Firestein K; Sorokin PB; Fukata N; Golberg D
    Nano Lett; 2018 Nov; 18(11):7238-7246. PubMed ID: 30346785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.
    Liu B; Yang B; Yuan F; Liu Q; Shi D; Jiang C; Zhang J; Staedler T; Jiang X
    Nano Lett; 2015 Dec; 15(12):7837-46. PubMed ID: 26517395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel combined experimental and multiscale theoretical approach to unravel the structure of SiC/SiO
    Morresi T; Timpel M; Pedrielli A; Garberoglio G; Tatti R; Verucchi R; Pasquali L; Pugno NM; Nardi MV; Taioli S
    Nanoscale; 2018 Jul; 10(28):13449-13461. PubMed ID: 29972180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport modulation in Ge/Si core/shell nanowires through controlled synthesis of doped Si shells.
    Zhao Y; Smith JT; Appenzeller J; Yang C
    Nano Lett; 2011 Apr; 11(4):1406-11. PubMed ID: 21417251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable Fabricating Dielectric-Dielectric SiC@C Core-Shell Nanowires for High-Performance Electromagnetic Wave Attenuation.
    Liang C; Wang Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40690-40696. PubMed ID: 29088527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct growth of core-shell SiC-SiO(2) nanowires and field emission characteristics.
    Ryu Y; Tak Y; Yong K
    Nanotechnology; 2005 Jul; 16(7):S370-4. PubMed ID: 21727454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-Induced Heterointerface Thinning for Schottky Barrier Modification of Core/Shell SiC/SiO
    Xing S; Lin L; Huo J; Zou G; Sheng X; Liu L; Zhou YN
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9326-9332. PubMed ID: 30757894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-potential-modulated piezoresistive effect of core-shell 3C-SiC nanowires.
    Uesugi A; Nakata S; Inoyama K; Sugano K; Isono Y
    Nanotechnology; 2022 Sep; 33(50):. PubMed ID: 36027761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural properties of silicon-germanium and germanium-silicon core-shell nanowires.
    O'Rourke C; Mujahed SY; Kumarasinghe C; Miyazaki T; Bowler DR
    J Phys Condens Matter; 2018 Nov; 30(46):465303. PubMed ID: 30284970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of SiC/SiO
    Chen BY; Chi CC; Hsu WK; Ouyang H
    Sci Rep; 2021 Jan; 11(1):233. PubMed ID: 33420336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.
    Rieger T; Zellekens P; Demarina N; Hassan AA; Hackemüller FJ; Lüth H; Pietsch U; Schäpers T; Grützmacher D; Lepsa MI
    Nanoscale; 2017 Nov; 9(46):18392-18401. PubMed ID: 29147699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled growth of Si-based heterostructure nanowires and their structural and electrical properties.
    Qian G; Rahman SA; Goh BT
    Nanoscale Res Lett; 2015 Dec; 10(1):980. PubMed ID: 26100555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays.
    Cheng C; Wang TL; Feng L; Li W; Ho KM; Loy MM; Fung KK; Wang N
    Nanotechnology; 2010 Nov; 21(47):475703. PubMed ID: 21030773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cracking the Si Shell Growth in Hexagonal GaP-Si Core-Shell Nanowires.
    Conesa-Boj S; Hauge HI; Verheijen MA; Assali S; Li A; Bakkers EP; Fontcuberta i Morral A
    Nano Lett; 2015 May; 15(5):2974-9. PubMed ID: 25922878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the core near-band-edge emission induced by an amorphous shell in coaxial one-dimensional nanostructure: the case of SiC/SiO2 core/shell self-organized nanowires.
    Fabbri F; Rossi F; Attolini G; Salviati G; Iannotta S; Aversa L; Verucchi R; Nardi M; Fukata N; Dierre B; Sekiguchi T
    Nanotechnology; 2010 Aug; 21(34):345702. PubMed ID: 20683139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.