These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 25840150)
1. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Kumar P; Ray S; Patel SK; Lee JK; Kalia VC Int J Biol Macromol; 2015; 78():9-16. PubMed ID: 25840150 [TBL] [Abstract][Full Text] [Related]
2. Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoate co-polymer composition. Ray S; Kalia VC Bioresour Technol; 2017 Jan; 224():743-747. PubMed ID: 27914782 [TBL] [Abstract][Full Text] [Related]
3. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Kumar P; Sharma R; Ray S; Mehariya S; Patel SKS; Lee JK; Kalia VC Bioresour Technol; 2015 Apr; 182():383-388. PubMed ID: 25686722 [TBL] [Abstract][Full Text] [Related]
4. Co-utilization of Crude Glycerol and Biowastes for Producing Polyhydroxyalkanoates. Ray S; Sharma R; Kalia VC Indian J Microbiol; 2018 Mar; 58(1):33-38. PubMed ID: 29434395 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. García IL; López JA; Dorado MP; Kopsahelis N; Alexandri M; Papanikolaou S; Villar MA; Koutinas AA Bioresour Technol; 2013 Feb; 130():16-22. PubMed ID: 23280181 [TBL] [Abstract][Full Text] [Related]
6. Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved. Valappil SP; Rai R; Bucke C; Roy I J Appl Microbiol; 2008 Jun; 104(6):1624-35. PubMed ID: 18194257 [TBL] [Abstract][Full Text] [Related]
7. Bioprocessing of Biodiesel Industry Effluent by Immobilized Bacteria to Produce Value-Added Products. Prakash J; Gupta RK; Xx P; Kalia VC Appl Biochem Biotechnol; 2018 May; 185(1):179-190. PubMed ID: 29101733 [TBL] [Abstract][Full Text] [Related]
8. Adaptation of Cupriavidus necator to conditions favoring polyhydroxyalkanoate production. Cavalheiro JM; de Almeida MC; da Fonseca MM; de Carvalho CC J Biotechnol; 2012 Dec; 164(2):309-17. PubMed ID: 23376842 [TBL] [Abstract][Full Text] [Related]
9. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Kenny ST; Runic JN; Kaminsky W; Woods T; Babu RP; O'Connor KE Appl Microbiol Biotechnol; 2012 Aug; 95(3):623-33. PubMed ID: 22581066 [TBL] [Abstract][Full Text] [Related]
10. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel by-product and propionic acid by mutant strains of Pandoraea sp. de Paula FC; de Paula CBC; Gomez JGC; Steinbüchel A; Contiero J Biotechnol Prog; 2017 Jul; 33(4):1077-1084. PubMed ID: 28393487 [TBL] [Abstract][Full Text] [Related]
11. Effect of nitrogen limitation on enrichment of activated sludge for PHA production. Basak B; Ince O; Artan N; Yagci N; Ince BK Bioprocess Biosyst Eng; 2011 Oct; 34(8):1007-16. PubMed ID: 21643976 [TBL] [Abstract][Full Text] [Related]
12. Production and characterization of polyhydroxyalkanoic acid from Bacillus thuringiensis using different carbon substrates. Odeniyi OA; Adeola OJ Int J Biol Macromol; 2017 Nov; 104(Pt A):407-413. PubMed ID: 28619635 [TBL] [Abstract][Full Text] [Related]
13. Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Kumar P; Ray S; Kalia VC Bioresour Technol; 2016 Jan; 200():413-9. PubMed ID: 26512866 [TBL] [Abstract][Full Text] [Related]
14. Bio-hydrogen production by co-digestion of domestic wastewater and biodiesel industry effluent. Prakash J; Sharma R; Patel SKS; Kim IW; Kalia VC PLoS One; 2018; 13(7):e0199059. PubMed ID: 29995877 [TBL] [Abstract][Full Text] [Related]
15. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Moita R; Freches A; Lemos PC Water Res; 2014 Jul; 58():9-20. PubMed ID: 24731872 [TBL] [Abstract][Full Text] [Related]
16. [BIOCONVERSION OF CRUDE GLYCEROL AND MOLASSES MIXTURE IN BIOSURFACTANTS OF NOCARDIA VACCINII IMB B-7405]. Pirog TP; Kudrya NV; Shevchuk TA; Beregova KA; Iutynska GO Mikrobiol Z; 2015; 77(3):28-35. PubMed ID: 26214896 [TBL] [Abstract][Full Text] [Related]
17. Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli. Kang Z; Du L; Kang J; Wang Y; Wang Q; Liang Q; Qi Q Bioresour Technol; 2011 Jun; 102(11):6600-4. PubMed ID: 21489786 [TBL] [Abstract][Full Text] [Related]
18. Response surface methodology optimization of polyhydroxyalkanoate production by Burkholderia cepacia BPT1213 using waste glycerol from palm oil-based biodiesel production. Mohd Zain NF; Paramasivam M; Tan JS; Lim V; Lee CK Biotechnol Prog; 2021 Jan; 37(1):e3077. PubMed ID: 32894656 [TBL] [Abstract][Full Text] [Related]
19. Microbial community engineering for biopolymer production from glycerol. Moralejo-Gárate H; Mar'atusalihat E; Kleerebezem R; van Loosdrecht MC Appl Microbiol Biotechnol; 2011 Nov; 92(3):631-9. PubMed ID: 21674168 [TBL] [Abstract][Full Text] [Related]