These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25840361)

  • 1. Influence of reaction conditions on the composition of liquid products from two-stage catalytic hydrothermal processing of lignin.
    Onwudili JA
    Bioresour Technol; 2015; 187():60-69. PubMed ID: 25840361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid.
    Xu W; Miller SJ; Agrawal PK; Jones CW
    ChemSusChem; 2012 Apr; 5(4):667-75. PubMed ID: 22438328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers.
    Singh R; Prakash A; Dhiman SK; Balagurumurthy B; Arora AK; Puri SK; Bhaskar T
    Bioresour Technol; 2014 Aug; 165():319-22. PubMed ID: 24636917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol/1,4-dioxane/formic acid as synergistic solvents for the conversion of lignin into high-value added phenolic monomers.
    Wu Z; Zhao X; Zhang J; Li X; Zhang Y; Wang F
    Bioresour Technol; 2019 Apr; 278():187-194. PubMed ID: 30703636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and Kinetic Study on Lignin Depolymerization in Water/Formic Acid System.
    Wang Q; Guan S; Shen D
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 28974020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source.
    Huang S; Mahmood N; Tymchyshyn M; Yuan Z; Xu CC
    Bioresour Technol; 2014 Nov; 171():95-102. PubMed ID: 25189514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media.
    Kristianto I; Limarta SO; Lee H; Ha JM; Suh DJ; Jae J
    Bioresour Technol; 2017 Jun; 234():424-431. PubMed ID: 28347962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Soluble Lignin on the Formic Acid-Catalyzed Formation of Furfural: A Case Study for the Upgrading of Hemicellulose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2016 Mar; 9(5):492-504. PubMed ID: 26805656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the Role of Formic Acid and the Type of Solvent in the Catalytic Conversion of Lignin: A Holistic Approach.
    Oregui-Bengoechea M; Gandarias I; Arias PL; Barth T
    ChemSusChem; 2017 Feb; 10(4):754-766. PubMed ID: 27925410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the effect of temperature and reaction time on yields, compositions and oil quality in catalytic and non-catalytic lignin solvolysis in a formic acid/water media using experimental design.
    Oregui Bengoechea M; Miletíc N; Vogt MH; Arias PL; Barth T
    Bioresour Technol; 2017 Jun; 234():86-98. PubMed ID: 28319777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodechlorination of 4-chlorophenol in water with formic acid using a Pd/activated carbon catalyst.
    Calvo L; Gilarranz MA; Casas JA; Mohedano AF; Rodríguez JJ
    J Hazard Mater; 2009 Jan; 161(2-3):842-7. PubMed ID: 18502041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent and catalyst effect in the formic acid aided lignin-to-liquids.
    Oregui-Bengoechea M; Gandarias I; Arias PL; Barth T
    Bioresour Technol; 2018 Dec; 270():529-536. PubMed ID: 30248652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step ethanolysis of lignin into small-molecular aromatic hydrocarbons over nano-SiC catalyst.
    Chen Y; Wang F; Jia Y; Yang N; Zhang X
    Bioresour Technol; 2017 Feb; 226():145-149. PubMed ID: 27997868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of kraft lignin under hydrothermal conditions.
    Zhou XF
    Bioresour Technol; 2014 Oct; 170():583-586. PubMed ID: 25176169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction kinetics of the hydrothermal treatment of lignin.
    Zhang B; Huang HJ; Ramaswamy S
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):119-31. PubMed ID: 18401758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of formic acid to methanol under hydrothermal conditions in the presence of Cu and Zn.
    Liu J; Zeng X; Cheng M; Yun J; Li Q; Jing Z; Jin F
    Bioresour Technol; 2012 Jun; 114():658-62. PubMed ID: 22483350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water.
    Nguyen TDH; Maschietti M; Åmand LE; Vamling L; Olausson L; Andersson SI; Theliander H
    Bioresour Technol; 2014 Oct; 170():196-203. PubMed ID: 25137090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals.
    Lee HS; Jae J; Ha JM; Suh DJ
    Bioresour Technol; 2016 Mar; 203():142-9. PubMed ID: 26722814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formic-acid-induced depolymerization of oxidized lignin to aromatics.
    Rahimi A; Ulbrich A; Coon JJ; Stahl SS
    Nature; 2014 Nov; 515(7526):249-52. PubMed ID: 25363781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.