BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25840564)

  • 1. Measuring the solid-phase fractionation of lead in urban and rural soils using a combination of geochemical survey data and chemical extractions.
    Cave M; Wragg J; Gowing C; Gardner A
    Environ Geochem Health; 2015 Aug; 37(4):779-90. PubMed ID: 25840564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemistry, mineralogy, solid-phase fractionation and oral bioaccessibility of lead in urban soils of Lisbon.
    Reis AP; Patinha C; Wragg J; Dias AC; Cave M; Sousa AJ; Costa C; Cachada A; Ferreira da Silva E; Rocha F; Duarte A
    Environ Geochem Health; 2014 Oct; 36(5):867-81. PubMed ID: 24817572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of a geochemical extraction procedure to determine the solid phase fractionation and bioaccessibility of potentially harmful elements in soils: a case study using the NIST 2710 reference soil.
    Wragg J; Cave M
    Anal Chim Acta; 2012 Apr; 722():43-54. PubMed ID: 22444533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling Pb bioaccessibility in soils contaminated by mining and smelting activities.
    Caboche J; Denys S; Feidt C; Delalain P; Tack K; Rychen G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1264-74. PubMed ID: 20635294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils.
    Tang XY; Cui YS; Duan J; Tang L
    J Hazard Mater; 2008 Dec; 160(1):29-36. PubMed ID: 18395339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of aging on arsenic and lead fractionation and availability in soils: coupling sequential extractions with diffusive gradients in thin-films technique.
    Liang S; Guan DX; Ren JH; Zhang M; Luo J; Ma LQ
    J Hazard Mater; 2014 May; 273():272-9. PubMed ID: 24751493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead bioaccessibility in topsoils from lead mineralisation and urban domains, UK.
    Appleton JD; Cave MR; Palumbo-Roe B; Wragg J
    Environ Pollut; 2013 Jul; 178():278-87. PubMed ID: 23587858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosolids compost amendment for reducing soil lead hazards: a pilot study of Orgro amendment and grass seeding in urban yards.
    Farfel MR; Orlova AO; Chaney RL; Lees PS; Rohde C; Ashley PJ
    Sci Total Environ; 2005 Mar; 340(1-3):81-95. PubMed ID: 15752494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mobility and human oral bioaccessibility of Zn and Pb in urban dusts of Estarreja (N Portugal).
    Patinha C; Reis AP; Dias AC; Abduljelil AA; Noack Y; Robert S; Cave M; Ferreira da Silva E
    Environ Geochem Health; 2015 Feb; 37(1):115-31. PubMed ID: 25027473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of aging on bioaccessibility of arsenic and lead in soils.
    Liang S; Guan DX; Li J; Zhou CY; Luo J; Ma LQ
    Chemosphere; 2016 May; 151():94-100. PubMed ID: 26930247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the relationship between lead speciation and bioaccessibility of mining impacted soils and dusts.
    Liu Y; Bello O; Rahman MM; Dong Z; Islam S; Naidu R
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):17056-17067. PubMed ID: 28580551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils.
    Sanderson P; Naidu R; Bolan N
    J Environ Manage; 2016 Apr; 170():123-30. PubMed ID: 26812009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil.
    Palumbo-Roe B; Wragg J; Cave M
    Environ Pollut; 2015 Dec; 207():256-65. PubMed ID: 26412265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions.
    Li J; Li K; Cave M; Li HB; Ma LQ
    J Hazard Mater; 2015 Sep; 295():55-62. PubMed ID: 25911623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling lead bioaccessibility in urban topsoils based on data from Glasgow, London, Northampton and Swansea, UK.
    Appleton JD; Cave MR; Wragg J
    Environ Pollut; 2012 Dec; 171():265-72. PubMed ID: 22938825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccessibility of lead in high carbonate soils.
    Denys S; Caboche J; Tack K; Delalain P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1331-9. PubMed ID: 17654152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland.
    Farmer JG; Broadway A; Cave MR; Wragg J; Fordyce FM; Graham MC; Ngwenya BT; Bewley RJ
    Sci Total Environ; 2011 Nov; 409(23):4958-65. PubMed ID: 21930292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead Speciation and In Vitro Bioaccessibility of Compost-Amended Urban Garden Soils.
    Attanayake CP; Hettiarachchi GM; Ma Q; Pierzynski GM; Ransom MD
    J Environ Qual; 2017 Nov; 46(6):1215-1224. PubMed ID: 29293834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil solution interactions may limit Pb remediation using PĀ amendments in an urban soil.
    Obrycki JF; Scheckel KG; Basta NT
    Environ Pollut; 2017 Jan; 220(Pt A):549-556. PubMed ID: 27751639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles.
    Liu R; Zhao D
    Water Res; 2007 Jun; 41(12):2491-502. PubMed ID: 17482234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.