BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25840594)

  • 1. Identifying sequential substrate binding at the single-molecule level by enzyme mechanical stabilization.
    Rivas-Pardo JA; Alegre-Cebollada J; Ramírez-Sarmiento CA; Fernandez JM; Guixé V
    ACS Nano; 2015; 9(4):3996-4005. PubMed ID: 25840594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure, SAXS and kinetic mechanism of hyperthermophilic ADP-dependent glucokinase from Thermococcus litoralis reveal a conserved mechanism for catalysis.
    Rivas-Pardo JA; Herrera-Morande A; Castro-Fernandez V; Fernandez FJ; Vega MC; Guixé V
    PLoS One; 2013; 8(6):e66687. PubMed ID: 23818958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein topology determines substrate-binding mechanism in homologous enzymes.
    Herrera-Morande A; Castro-Fernández V; Merino F; Ramírez-Sarmiento CA; Fernández FJ; Vega MC; Guixé V
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2869-2878. PubMed ID: 30251675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of an ADP-dependent glucokinase from Pyrococcus furiosus: implications for a sugar-induced conformational change in ADP-dependent kinase.
    Ito S; Fushinobu S; Jeong JJ; Yoshioka I; Koga S; Shoun H; Wakagi T
    J Mol Biol; 2003 Aug; 331(4):871-83. PubMed ID: 12909015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the functional roles of the conserved NXXE and HXE motifs of the ADP-dependent glucokinase from Thermococcus litoralis.
    Abarca-Lagunas MJ; Rivas-Pardo JA; Ramírez-Sarmiento CA; Guixé V
    FEBS Lett; 2015 Oct; 589(21):3271-6. PubMed ID: 26428088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon.
    Ito S; Fushinobu S; Yoshioka I; Koga S; Matsuzawa H; Wakagi T
    Structure; 2001 Mar; 9(3):205-14. PubMed ID: 11286887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the ADP-dependent glucokinase from Pyrococcus horikoshii at 2.0-A resolution: a large conformational change in ADP-dependent glucokinase.
    Tsuge H; Sakuraba H; Kobe T; Kujime A; Katunuma N; Ohshima T
    Protein Sci; 2002 Oct; 11(10):2456-63. PubMed ID: 12237466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of multimer stabilization in the mechanical unfolding pathway of a protein undergoing oligomerization.
    Scholl ZN; Yang W; Marszalek PE
    ACS Nano; 2015 Feb; 9(2):1189-97. PubMed ID: 25639698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic activation of human glucokinase by substrate binding: residue contacts involved in the binding of D-glucose to the super-open form and conformational transitions.
    Molnes J; Bjørkhaug L; Søvik O; Njølstad PR; Flatmark T
    FEBS J; 2008 May; 275(10):2467-81. PubMed ID: 18397317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324.
    Labes A; Schönheit P
    Arch Microbiol; 2003 Jul; 180(1):69-75. PubMed ID: 12802482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple unfolding pathways of leucine binding protein (LBP) probed by single-molecule force spectroscopy (SMFS).
    Kotamarthi HC; Sharma R; Narayan S; Ray S; Ainavarapu SR
    J Am Chem Soc; 2013 Oct; 135(39):14768-74. PubMed ID: 24015877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal Structure of
    Zak KM; Kalińska M; Wątor E; Kuśka K; Krutyhołowa R; Dubin G; Popowicz GM; Grudnik P
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31569356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of Trypanosoma cruzi glucokinase reveals features determining oligomerization and anomer specificity of hexose-phosphorylating enzymes.
    Cordeiro AT; Cáceres AJ; Vertommen D; Concepción JL; Michels PA; Versées W
    J Mol Biol; 2007 Oct; 372(5):1215-26. PubMed ID: 17761195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand binding mechanics of maltose binding protein.
    Bertz M; Rief M
    J Mol Biol; 2009 Nov; 393(5):1097-105. PubMed ID: 19733183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple unfolding intermediates of human placental alkaline phosphatase in equilibrium urea denaturation.
    Hung HC; Chang GG
    Biophys J; 2001 Dec; 81(6):3456-71. PubMed ID: 11721007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.
    Hu X; Li H
    FEBS Lett; 2014 Oct; 588(19):3613-20. PubMed ID: 24747422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding.
    Hughes ML; Dougan L
    Rep Prog Phys; 2016 Jul; 79(7):076601. PubMed ID: 27309041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding kinetics of glucose and allosteric activators to human glucokinase reveal multiple conformational states.
    Antoine M; Boutin JA; Ferry G
    Biochemistry; 2009 Jun; 48(23):5466-82. PubMed ID: 19459610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-induced changes of the apparent transition-state position in mechanical protein unfolding.
    Stigler J; Rief M
    Biophys J; 2015 Jul; 109(2):365-72. PubMed ID: 26200872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of a thermostable l-aminoacylase biocatalyst.
    Parker BM; Taylor IN; Woodley JM; Ward JM; Dalby PA
    J Biotechnol; 2011 Oct; 155(4):396-405. PubMed ID: 21827797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.