These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 25841189)
1. Evaluation of hydrogen production and internal resistance in forward osmosis membrane integrated microbial electrolysis cells. Lee MY; Kim KY; Yang E; Kim IS Bioresour Technol; 2015; 187():106-112. PubMed ID: 25841189 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs). Cheng S; Logan BE Water Sci Technol; 2008; 58(4):853-7. PubMed ID: 18776621 [TBL] [Abstract][Full Text] [Related]
3. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system. Ajayi FF; Kim KY; Chae KJ; Choi MJ; Chang IS; Kim IS Photochem Photobiol Sci; 2010 Mar; 9(3):349-56. PubMed ID: 20221461 [TBL] [Abstract][Full Text] [Related]
4. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system. Qin M; Molitor H; Brazil B; Novak JT; He Z Bioresour Technol; 2016 Jan; 200():485-92. PubMed ID: 26519701 [TBL] [Abstract][Full Text] [Related]
5. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Cheng S; Logan BE Bioresour Technol; 2011 Feb; 102(3):3571-4. PubMed ID: 21036036 [TBL] [Abstract][Full Text] [Related]
6. Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up. Kitching M; Butler R; Marsili E Enzyme Microb Technol; 2017 Jan; 96():1-13. PubMed ID: 27871368 [TBL] [Abstract][Full Text] [Related]
7. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells. Lu L; Xing D; Liu B; Ren N Water Res; 2012 Mar; 46(4):1015-26. PubMed ID: 22197264 [TBL] [Abstract][Full Text] [Related]
8. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594 [TBL] [Abstract][Full Text] [Related]
9. Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. Catal T; Lesnik KL; Liu H Bioresour Technol; 2015; 187():77-83. PubMed ID: 25841185 [TBL] [Abstract][Full Text] [Related]
10. Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells - A review. Karthikeyan R; Cheng KY; Selvam A; Bose A; Wong JWC Biotechnol Adv; 2017 Nov; 35(6):758-771. PubMed ID: 28709875 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production. Rivera I; Bakonyi P; Cuautle-Marín MA; Buitrón G Chemosphere; 2017 May; 174():253-259. PubMed ID: 28171841 [TBL] [Abstract][Full Text] [Related]
12. Impact of volatile fatty acids on microbial electrolysis cell performance. Yang N; Hafez H; Nakhla G Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302 [TBL] [Abstract][Full Text] [Related]
13. Hydrophilic porous materials provide efficient gas-liquid separation to advance hydrogen production in microbial electrolysis cells. Zhao N; Liang D; Li X; Meng S; Liu H Bioresour Technol; 2021 Oct; 337():125352. PubMed ID: 34098503 [TBL] [Abstract][Full Text] [Related]
14. Microbial electrolysis cell with a microbial biocathode. Jeremiasse AW; Hamelers HV; Buisman CJ Bioelectrochemistry; 2010 Apr; 78(1):39-43. PubMed ID: 19523879 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of quaternary ammonium and 1,4-diazabicyclo[2.2.2]octane-functionalized anion-exchange membranes for biohydrogen production in microbial electrolysis cells. Cardeña R; Žitka J; Koók L; Bakonyi P; Pavlovec L; Otmar M; Nemestóthy N; Buitrón G Bioelectrochemistry; 2020 Jun; 133():107479. PubMed ID: 32086178 [TBL] [Abstract][Full Text] [Related]
16. Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater. Escapa A; Gil-Carrera L; García V; Morán A Bioresour Technol; 2012 Aug; 117():55-62. PubMed ID: 22609714 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Lu L; Xing D; Xie T; Ren N; Logan BE Biosens Bioelectron; 2010 Aug; 25(12):2690-5. PubMed ID: 20537524 [TBL] [Abstract][Full Text] [Related]
18. Enhancing proton transport in polyvinylidenedifluoride membranes and reducing biofouling for improved hydrogen production in microbial electrolysis cells. Zhao N; Meng S; Li X; Liu H; Liang D Bioresour Technol; 2024 Jun; 402():130842. PubMed ID: 38750828 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Hu H; Fan Y; Liu H Water Res; 2008 Sep; 42(15):4172-8. PubMed ID: 18718624 [TBL] [Abstract][Full Text] [Related]
20. Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells. Dhar BR; Gao Y; Yeo H; Lee HS Bioresour Technol; 2013 Nov; 148():208-14. PubMed ID: 24047682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]