These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2584177)

  • 1. Strength, elasticity and viscoelastic properties of cerebral aneurysms.
    Steiger HJ; Aaslid R; Keller S; Reulen HJ
    Heart Vessels; 1989; 5(1):41-6. PubMed ID: 2584177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of aneurysms can be understood as passive yield to blood pressure. An experimental study.
    Steiger HJ; Aaslid R; Keller S; Reulen HJ
    Acta Neurochir (Wien); 1989; 100(1-2):74-8. PubMed ID: 2816538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms.
    Tóth M; Nádasy GL; Nyáry I; Kerényi T; Orosz M; Molnárka G; Monos E
    J Vasc Res; 1998; 35(5):345-55. PubMed ID: 9789115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory tests for strength paramaters of brain aneurysms.
    Tóth BK; Nasztanovics F; Bojtár I
    Acta Bioeng Biomech; 2007; 9(2):3-7. PubMed ID: 18421937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms.
    Ma B; Lu J; Harbaugh RE; Raghavan ML
    J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.
    Shi C; Kojima M; Anzai H; Tercero C; Ikeda S; Ohta M; Fukuda T; Arai F; Najdovski Z; Negoro M; Irie K
    Int J Med Robot; 2013 Jun; 9(2):213-22. PubMed ID: 23483681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear mathematical model for the development and rupture of intracranial saccular aneurysms.
    Hademenos GJ; Massoud T; Valentino DJ; Duckwiler G; Viñuela F
    Neurol Res; 1994 Oct; 16(5):376-84. PubMed ID: 7870277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are there systemic changes in the arterial biomechanics of intracranial aneurysm patients?
    Tóth M; Nádasy GL; Nyár I; Kerényi T; Monos E
    Pflugers Arch; 2000 Mar; 439(5):573-8. PubMed ID: 10764217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant intracranial aneurysm embolization with a yield stress fluid material: insights from CFD analysis.
    Wang W; Graziano F; Russo V; Ulm AJ; De Kee D; Khismatullin DB
    Biorheology; 2013; 50(3-4):99-114. PubMed ID: 23863277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms.
    Robertson AM; Duan X; Aziz KM; Hill MR; Watkins SC; Cebral JR
    Ann Biomed Eng; 2015 Jul; 43(7):1502-15. PubMed ID: 25632891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variations in wall thickness, material stiffness and initial shape affect wall stress and shape of intracranial aneurysms.
    Challa V; Han HC
    Neurol Res; 2007 Sep; 29(6):569-77. PubMed ID: 17535557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms.
    Tavares Monteiro JA; da Silva ES; Raghavan ML; Puech-Leão P; de Lourdes Higuchi M; Otoch JP
    J Vasc Surg; 2014 May; 59(5):1393-401.e1-2. PubMed ID: 23891493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cardiovascular physiology. Elasticity and viscoelasticity of the circulatory system. I. Physical basis. II. Arteries].
    Bettencourt MJ
    Rev Port Cardiol; 1994 Apr; 13(4):337-54,292. PubMed ID: 7917383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow-induced wall mechanics of patient-specific aneurysmal cerebral arteries: Nonlinear isotropic versus anisotropic wall stress.
    Cornejo S; Guzmán A; Valencia A; Rodríguez J; Finol E
    Proc Inst Mech Eng H; 2014 Jan; 228(1):37-48. PubMed ID: 24280227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic Principles of Hemodynamics and Cerebral Aneurysms.
    Munarriz PM; Gómez PA; Paredes I; Castaño-Leon AM; Cepeda S; Lagares A
    World Neurosurg; 2016 Apr; 88():311-319. PubMed ID: 26805691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms.
    Dempere-Marco L; Oubel E; Castro M; Putman C; Frangi A; Cebral J
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):438-45. PubMed ID: 17354802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative determination of hyaluronan content in cerebral aneurysms by digital densitometry.
    Klekner A; Felszeghy S; Tammi R; Tammi M; Csécsei G; Módis L
    Zentralbl Neurochir; 2005 Nov; 66(4):207-12. PubMed ID: 16317603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haemodynamic stress in lateral saccular aneurysms. An experimental study.
    Steiger HJ; Poll A; Liepsch D; Reulen HJ
    Acta Neurochir (Wien); 1987; 86(3-4):98-105. PubMed ID: 3630787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of wall tension in cerebral artery aneurysms by numerical simulation.
    Isaksen JG; Bazilevs Y; Kvamsdal T; Zhang Y; Kaspersen JH; Waterloo K; Romner B; Ingebrigtsen T
    Stroke; 2008 Dec; 39(12):3172-8. PubMed ID: 18818402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms.
    Fisher C; Rossmann JS
    J Biomech Eng; 2009 Sep; 131(9):091004. PubMed ID: 19725693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.