These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2584177)

  • 21. Finite strain elastodynamics of intracranial saccular aneurysms.
    Shah AD; Humphrey JD
    J Biomech; 1999 Jun; 32(6):593-9. PubMed ID: 10332623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A theoretical model for fibroblast-controlled growth of saccular cerebral aneurysms.
    Kroon M; Holzapfel GA
    J Theor Biol; 2009 Mar; 257(1):73-83. PubMed ID: 19027028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms.
    Ferguson GG
    J Neurosurg; 1972 Dec; 37(6):666-77. PubMed ID: 4654696
    [No Abstract]   [Full Text] [Related]  

  • 24. An inelastic multi-mechanism constitutive equation for cerebral arterial tissue.
    Wulandana R; Robertson AM
    Biomech Model Mechanobiol; 2005 Dec; 4(4):235-48. PubMed ID: 16283226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical model of the rupture mechanism of intracranial saccular aneurysms through daughter aneurysm formation and growth.
    Meng H; Feng Y; Woodward SH; Bendok BR; Hanel RA; Guterman LR; Hopkins LN
    Neurol Res; 2005 Jul; 27(5):459-65. PubMed ID: 15978170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shear stress in cerebral arteries carrying saccular aneurysms. A preliminary study.
    Rossitti S
    Acta Radiol; 1998 Nov; 39(6):711-7. PubMed ID: 9817048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Associations between viscoelastic properties of large arteries and their extracellular matrix composition in abdominal aortic aneurysms in humans].
    Boutouyrie P; Glaser C; Moryusef A; Bézie Y; Fabiani JN; Laurent S; Lacolley P
    Therapie; 1999; 54(1):85-91. PubMed ID: 10216430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP transport in saccular cerebral aneurysms at arterial bends.
    Imai Y; Sato K; Ishikawa T; Comerford A; David T; Yamaguchi T
    Ann Biomed Eng; 2010 Mar; 38(3):927-34. PubMed ID: 20012692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patient-specific wall stress analysis in cerebral aneurysms using inverse shell model.
    Zhou X; Raghavan ML; Harbaugh RE; Lu J
    Ann Biomed Eng; 2010 Feb; 38(2):478-89. PubMed ID: 19953324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project).
    Costalat V; Sanchez M; Ambard D; Thines L; Lonjon N; Nicoud F; Brunel H; Lejeune JP; Dufour H; Bouillot P; Lhaldky JP; Kouri K; Segnarbieux F; Maurage CA; Lobotesis K; Villa-Uriol MC; Zhang C; Frangi AF; Mercier G; Bonafé A; Sarry L; Jourdan F
    J Biomech; 2011 Oct; 44(15):2685-91. PubMed ID: 21924427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemodynamic stress in terminal saccular aneurysms: a laser-Doppler study.
    Steiger HJ; Liepsch DW; Poll A; Reulen HJ
    Heart Vessels; 1988; 4(3):162-9. PubMed ID: 3248984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inflow into saccular cerebral aneurysms at arterial bends.
    Imai Y; Sato K; Ishikawa T; Yamaguchi T
    Ann Biomed Eng; 2008 Sep; 36(9):1489-95. PubMed ID: 18563567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemodynamic stress in lateral saccular aneurysms.
    Liepsch DW; Steiger HJ; Poll A; Reulen HJ
    Biorheology; 1987; 24(6):689-710. PubMed ID: 2971404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics.
    Burleson AC; Strother CM; Turitto VT
    Neurosurgery; 1995 Oct; 37(4):774-82; discussion 782-4. PubMed ID: 8559308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen type III deficiency in patients with rupture of intracranial saccular aneurysms.
    Ostergaard JR; Oxlund H
    J Neurosurg; 1987 Nov; 67(5):690-6. PubMed ID: 3668637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Further evidence for the dynamic stability of intracranial saccular aneurysms.
    David G; Humphrey JD
    J Biomech; 2003 Aug; 36(8):1143-50. PubMed ID: 12831740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directional wall strength in saccular brain aneurysms from polarized light microscopy.
    MacDonald DJ; Finlay HM; Canham PB
    Ann Biomed Eng; 2000 May; 28(5):533-42. PubMed ID: 10925951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic measurement of pressure and flow velocities in glass and silastic model berry aneurysms.
    Hashimoto T
    Neurol Res; 1984; 6(1-2):22-8. PubMed ID: 6147774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the effect of sharp rises in blood pressure in the Shah-Humphrey model for intracranial saccular aneurysms.
    Freitas P
    Biomech Model Mechanobiol; 2009 Dec; 8(6):457-71. PubMed ID: 19219622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemodynamics of Flow Diverters.
    Dholakia R; Sadasivan C; Fiorella DJ; Woo HH; Lieber BB
    J Biomech Eng; 2017 Feb; 139(2):. PubMed ID: 27727400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.