BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25841887)

  • 1. Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide.
    Cha HG; Seo MH; Lee HY; Lee JH; Lee DS; Shin K; Choi KH
    Mar Pollut Bull; 2015 Jun; 95(1):315-23. PubMed ID: 25841887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ships' Ballast Water Treatment by Chlorination Can Generate Toxic Trihalomethanes.
    Hernandez MR; Ismail N; Drouillard KG; MacIsaac HJ
    Bull Environ Contam Toxicol; 2017 Aug; 99(2):194-199. PubMed ID: 28638964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of didecyldimethylammonium chloride as a ballast water treatment method.
    van Slooten C; Peperzak L; Buma AG
    Environ Technol; 2015; 36(1-4):435-49. PubMed ID: 25182049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide.
    Stehouwer PP; Buma A; Peperzak L
    Environ Technol; 2015; 36(13-16):2094-104. PubMed ID: 25704551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.
    Echardt J; Kornmueller A
    Water Sci Technol; 2009; 60(9):2227-34. PubMed ID: 19901453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operational and environmental factors affecting disinfection byproducts formation in ballast water treatment systems.
    Moreno-Andrés J; Peperzak L
    Chemosphere; 2019 Oct; 232():496-505. PubMed ID: 31170652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of marine heterotrophic bacteria in ballast water by an Electrochemical Advanced Oxidation Process.
    Moreno-Andrés J; Ambauen N; Vadstein O; Hallé C; Acevedo-Merino A; Nebot E; Meyn T
    Water Res; 2018 Sep; 140():377-386. PubMed ID: 29753242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient inactivation of bacteria in ballast water by adding potassium peroxymonosulfate alone: Role of halide ions.
    Xu X; Ran Z; Wen G; Liang Z; Wan Q; Chen Z; Lin Y; Li K; Wang J; Huang T
    Chemosphere; 2020 Aug; 253():126656. PubMed ID: 32278911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of disinfection efficacy and chemical formation using MPUV ballast water treatment system (GloEn-Patrol).
    Jung YJ; Yoon Y; Pyo TS; Lee ST; Shin K; Kang JW
    Environ Technol; 2012 Sep; 33(16-18):1953-61. PubMed ID: 23240188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.
    Smith EM; Plewa MJ; Lindell CL; Richardson SD; Mitch WA
    Environ Sci Technol; 2010 Nov; 44(22):8446-52. PubMed ID: 20964286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesocosm experiments for evaluating the biological efficacy of ozone treatment of marine ballast water.
    Perrins JC; Cordell JR; Ferm NC; Grocock JL; Herwig RP
    Mar Pollut Bull; 2006 Dec; 52(12):1756-67. PubMed ID: 17046029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.
    Mao Y; Guo D; Yao W; Wang X; Yang H; Xie YF; Komarneni S; Yu G; Wang Y
    Water Res; 2018 Mar; 130():322-332. PubMed ID: 29247948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shipboard trials of an ozone-based ballast water treatment system.
    Wright DA; Gensemer RW; Mitchelmore CL; Stubblefield WA; van Genderen E; Dawson R; Orano-Dawson CE; Bearr JS; Mueller RA; Cooper WJ
    Mar Pollut Bull; 2010 Sep; 60(9):1571-83. PubMed ID: 20483433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term algal toxicity of oxidant treated ballast water.
    Ziegler G; Tamburri MN; Fisher DJ
    Mar Pollut Bull; 2018 Aug; 133():18-29. PubMed ID: 30041305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and speciation of disinfection byproducts during chlor(am)ination of aquarium seawater.
    Zhang H; Dong H; Adams C; Qiang Z; Luan G; Wang L
    J Environ Sci (China); 2015 Jul; 33():116-24. PubMed ID: 26141884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of residual toxicity of hypochlorite-treated water using bioluminescent microbes and microalgae: Implications for ballast water management.
    Lee JS; Hong S; Lee J; Choi TS; Rhie K; Khim JS
    Ecotoxicol Environ Saf; 2019 Jan; 167():130-137. PubMed ID: 30317117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-step effluent chlorination increases disinfection efficiency and reduces DBP formation and toxicity.
    Li Y; Zhang X; Yang M; Liu J; Li W; Graham NJD; Li X; Yang B
    Chemosphere; 2017 Feb; 168():1302-1308. PubMed ID: 27919529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-energy intensive electrochemical system for the eradication of Escherichia coli from ballast water: process development, disinfection chemistry, and kinetics modeling.
    Nanayakkara KG; Alam AK; Zheng YM; Chen JP
    Mar Pollut Bull; 2012 Jun; 64(6):1238-45. PubMed ID: 22483951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.