These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
782 related articles for article (PubMed ID: 25842129)
1. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes. Hakimi O; Aghion E; Goldman J Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():226-32. PubMed ID: 25842129 [TBL] [Abstract][Full Text] [Related]
2. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Bornapour M; Celikin M; Cerruti M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378 [TBL] [Abstract][Full Text] [Related]
3. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification. Aghion E; Jan L; Meshi L; Goldman J J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1541-8. PubMed ID: 25491147 [TBL] [Abstract][Full Text] [Related]
4. Porous biodegradable EW62 medical implants resist tumor cell growth. Hakimi O; Ventura Y; Goldman J; Vago R; Aghion E Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():516-25. PubMed ID: 26838879 [TBL] [Abstract][Full Text] [Related]
5. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163 [TBL] [Abstract][Full Text] [Related]
6. Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy. Lin DJ; Hung FY; Lui TS; Yeh ML Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():300-8. PubMed ID: 25842139 [TBL] [Abstract][Full Text] [Related]
7. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Törne K; Örnberg A; Weissenrieder J Acta Biomater; 2017 Jan; 48():541-550. PubMed ID: 27780765 [TBL] [Abstract][Full Text] [Related]
8. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. Gu XN; Zhou WR; Zheng YF; Cheng Y; Wei SC; Zhong SP; Xi TF; Chen LJ Acta Biomater; 2010 Dec; 6(12):4605-13. PubMed ID: 20656074 [TBL] [Abstract][Full Text] [Related]
9. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
10. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. Chou DT; Hong D; Saha P; Ferrero J; Lee B; Tan Z; Dong Z; Kumta PN Acta Biomater; 2013 Nov; 9(10):8518-33. PubMed ID: 23811218 [TBL] [Abstract][Full Text] [Related]
11. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal. Willbold E; Kalla K; Bartsch I; Bobe K; Brauneis M; Remennik S; Shechtman D; Nellesen J; Tillmann W; Vogt C; Witte F Acta Biomater; 2013 Nov; 9(10):8509-17. PubMed ID: 23416472 [TBL] [Abstract][Full Text] [Related]
12. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg₂Ca phase by high-ratio differential speed rolling. Seong JW; Kim WJ Acta Biomater; 2015 Jan; 11():531-42. PubMed ID: 25246310 [TBL] [Abstract][Full Text] [Related]
13. Security assessment of magnesium alloys used as biodegradable implant material. Sun X; Cao ZY; Liu JG; Feng C Biomed Mater Eng; 2015; 26 Suppl 1():S119-27. PubMed ID: 26405877 [TBL] [Abstract][Full Text] [Related]
14. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios. Zhang X; Yuan G; Niu J; Fu P; Ding W J Mech Behav Biomed Mater; 2012 May; 9():153-62. PubMed ID: 22498293 [TBL] [Abstract][Full Text] [Related]
15. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications. Mostaed E; Vedani M; Hashempour M; Bestetti M Biomatter; 2014; 4():e28283. PubMed ID: 25482411 [TBL] [Abstract][Full Text] [Related]
16. Effect of surface mechanical attrition treatment on biodegradable Mg-1Ca alloy. Li N; Li YD; Li YX; Wu YH; Zheng YF; Han Y Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():314-21. PubMed ID: 24411383 [TBL] [Abstract][Full Text] [Related]
17. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material. Gu XN; Li XL; Zhou WR; Cheng Y; Zheng YF Biomed Mater; 2010 Jun; 5(3):35013. PubMed ID: 20505233 [TBL] [Abstract][Full Text] [Related]
18. Elucidating the role of microstructural modification on stress corrosion cracking of biodegradable Mg4Zn alloy in simulated body fluid. Prabhu DB; Nampoothiri J; Elakkiya V; Narmadha R; Selvakumar R; Sivasubramanian R; Gopalakrishnan P; Ravi KR Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110164. PubMed ID: 31753353 [TBL] [Abstract][Full Text] [Related]
19. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
20. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification. Zhao C; Pan F; Zhao S; Pan H; Song K; Tang A Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():245-51. PubMed ID: 26046288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]