BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25842140)

  • 1. Hydroxyapatite-based materials of marine origin: a bioactivity and sintering study.
    Piccirillo C; Pullar RC; Costa E; Santos-Silva A; Pintado MM; Castro PM
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():309-15. PubMed ID: 25842140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.
    Mondal D; Nguyen L; Oh IH; Lee BT
    J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How useful is SBF in predicting in vivo bone bioactivity?
    Kokubo T; Takadama H
    Biomaterials; 2006 May; 27(15):2907-15. PubMed ID: 16448693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanical properties of single crystal hydroxyapatite by nanoindentation.
    Saber-Samandari S; Gross KA
    Acta Biomater; 2009 Jul; 5(6):2206-12. PubMed ID: 19264564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite.
    Kodama A; Bauer S; Komatsu A; Asoh H; Ono S; Schmuki P
    Acta Biomater; 2009 Jul; 5(6):2322-30. PubMed ID: 19332383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of powder calcination on the sintering of hydroxyapatite.
    Tan CY; Ramesh S; Aw KL; Yeo WH; Hamdi M; Sopyan I
    Med J Malaysia; 2008 Jul; 63 Suppl A():87-8. PubMed ID: 19024997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility of dense hydroxyapatite prepared using an SPS process.
    Nakahira A; Tamai M; Aritani H; Nakamura S; Yamashita K
    J Biomed Mater Res; 2002 Dec; 62(4):550-7. PubMed ID: 12221703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sintering behaviour of hydroxyapatite bioceramics.
    Ramesh S; Tan CY; Aw KL; Yeo WH; Hamdi M; Sopyan I; Teng WD
    Med J Malaysia; 2008 Jul; 63 Suppl A():89-90. PubMed ID: 19024998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.
    Bolelli G; Bellucci D; Cannillo V; Lusvarghi L; Sola A; Stiegler N; Müller P; Killinger A; Gadow R; Altomare L; De Nardo L
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():287-303. PubMed ID: 24268261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radio frequency (rf) plasma spheroidized HA powders: powder characterization and spark plasma sintering behavior.
    Xu JL; Khor KA; Gu YW; Kumar R; Cheang P
    Biomaterials; 2005 May; 26(15):2197-207. PubMed ID: 15585221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of a novel anorganic bovine bone xenograft with enhanced bioactivity and osteoconductivity.
    Cho JS; Kim HS; Um SH; Rhee SH
    J Biomed Mater Res B Appl Biomater; 2013 Jul; 101(5):855-69. PubMed ID: 23359483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of microstructures and phase compositions of artificial and bone-derived hydroxyapatites by transmission electron microscopy and energy dispersive electron spectroscopy.
    Lee JK
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8858-62. PubMed ID: 25958617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro cytotoxicity testing on valued added hydroxyapatite as bone replacement material.
    Shaari R; Samsudin AR
    Med J Malaysia; 2004 May; 59 Suppl B():109-10. PubMed ID: 15468842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute.
    Kim BS; Kang HJ; Yang SS; Lee J
    Biomed Mater; 2014 Apr; 9(2):025004. PubMed ID: 24487123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biphasic calcium phosphate loading on polycaprolactone/poly(lacto-co-glycolic acid) membranes for improved tensile strength, in vitro biocompatibility, and in vivo tissue regeneration.
    Franco RA; Sadiasa A; Seo HS; Lee BT
    J Biomater Appl; 2014 Apr; 28(8):1164-79. PubMed ID: 24014247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.