These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 25842141)
1. Layer-by-layer assembly of peptide based bioorganic-inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells. Romanelli SM; Fath KR; Phekoo AP; Knoll GA; Banerjee IA Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():316-28. PubMed ID: 25842141 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Yang XB; Bhatnagar RS; Li S; Oreffo RO Tissue Eng; 2004; 10(7-8):1148-59. PubMed ID: 15363171 [TBL] [Abstract][Full Text] [Related]
3. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
4. Tautomerizable β-ketonitrile copolymers for bone tissue engineering: Studies of biocompatibility and cytotoxicity. Lastra ML; Molinuevo MS; Giussi JM; Allegretti PE; Blaszczyk-Lezak I; Mijangos C; Cortizo MS Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():256-62. PubMed ID: 25842133 [TBL] [Abstract][Full Text] [Related]
5. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC; Mikael PE; Nukavarapu SP J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304 [TBL] [Abstract][Full Text] [Related]
6. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering. Luo Z; Yang Y; Deng Y; Sun Y; Yang H; Wei S Colloids Surf B Biointerfaces; 2016 Jul; 143():243-251. PubMed ID: 27022863 [TBL] [Abstract][Full Text] [Related]
7. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Przekora A; Ginalska G Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067 [TBL] [Abstract][Full Text] [Related]
8. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
9. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2. Subramanian G; Bialorucki C; Yildirim-Ayan E Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():16-27. PubMed ID: 25842103 [TBL] [Abstract][Full Text] [Related]
10. Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2. Zhou P; Xia Y; Cheng X; Wang P; Xie Y; Xu S Biomaterials; 2014 Dec; 35(38):10033-45. PubMed ID: 25260421 [TBL] [Abstract][Full Text] [Related]
11. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related]
12. Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces. Hossain M; Irwin R; Baumann MJ; McCabe LR Biomaterials; 2005 May; 26(15):2595-602. PubMed ID: 15585262 [TBL] [Abstract][Full Text] [Related]
13. Effect of TiO2 scaffolds coated with alginate hydrogel containing a proline-rich peptide on osteoblast growth and differentiation in vitro. Rubert M; Pullisaar H; Gómez-Florit M; Ramis JM; Tiainen H; Haugen HJ; Lyngstadaas SP; Monjo M J Biomed Mater Res A; 2013 Jun; 101(6):1768-77. PubMed ID: 23197406 [TBL] [Abstract][Full Text] [Related]
14. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Kerativitayanan P; Gaharwar AK Acta Biomater; 2015 Oct; 26():34-44. PubMed ID: 26297886 [TBL] [Abstract][Full Text] [Related]
15. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999 [TBL] [Abstract][Full Text] [Related]
16. Bone morphogenetic protein-6-loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3-E1 cells. Akman AC; Seda Tiğli R; Gümüşderelioğlu M; Nohutcu RM Artif Organs; 2010 Jan; 34(1):65-74. PubMed ID: 19821811 [TBL] [Abstract][Full Text] [Related]
17. Layer-by-layer assembly of silica nanoparticles on 3D fibrous scaffolds: enhancement of osteoblast cell adhesion, proliferation, and differentiation. Tang Y; Zhao Y; Wang X; Lin T J Biomed Mater Res A; 2014 Nov; 102(11):3803-12. PubMed ID: 24288259 [TBL] [Abstract][Full Text] [Related]
18. Enhanced differentiation of human embryonic stem cells on extracellular matrix-containing osteomimetic scaffolds for bone tissue engineering. Rutledge K; Cheng Q; Pryzhkova M; Harris GM; Jabbarzadeh E Tissue Eng Part C Methods; 2014 Nov; 20(11):865-74. PubMed ID: 24634988 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering. Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987 [TBL] [Abstract][Full Text] [Related]
20. Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Shea LD; Wang D; Franceschi RT; Mooney DJ Tissue Eng; 2000 Dec; 6(6):605-17. PubMed ID: 11103082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]