These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 25842141)
21. Biological performance of titania containing phosphate-based glasses for bone tissue engineering applications. Abou Neel EA; Chrzanowski W; Knowles JC Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():307-13. PubMed ID: 24411382 [TBL] [Abstract][Full Text] [Related]
22. Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Fang B; Wan YZ; Tang TT; Gao C; Dai KR Tissue Eng Part A; 2009 May; 15(5):1091-8. PubMed ID: 19196148 [TBL] [Abstract][Full Text] [Related]
23. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity. Nune KC; Kumar A; Murr LE; Misra RD J Biomed Mater Res A; 2016 Feb; 104(2):517-32. PubMed ID: 26475990 [TBL] [Abstract][Full Text] [Related]
24. The effects of different cross-linking conditions on collagen-based nanocomposite scaffolds-an in vitro evaluation using mesenchymal stem cells. Suchý T; Šupová M; Sauerová P; Verdánová M; Sucharda Z; Rýglová Š; Žaloudková M; Sedláček R; Kalbáčová MH Biomed Mater; 2015 Nov; 10(6):065008. PubMed ID: 26586611 [TBL] [Abstract][Full Text] [Related]
26. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering. Lo KW; Ulery BD; Kan HM; Ashe KM; Laurencin CT J Tissue Eng Regen Med; 2014 Sep; 8(9):728-36. PubMed ID: 22815259 [TBL] [Abstract][Full Text] [Related]
27. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. Li Y; Yang W; Li X; Zhang X; Wang C; Meng X; Pei Y; Fan X; Lan P; Wang C; Li X; Guo Z ACS Appl Mater Interfaces; 2015 Mar; 7(10):5715-24. PubMed ID: 25711714 [TBL] [Abstract][Full Text] [Related]
28. Invitro study of adherent mandibular osteoblast-like cells on carrier materials. Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876 [TBL] [Abstract][Full Text] [Related]
29. Structure design and manufacturing of layered bioceramic scaffolds for load-bearing bone reconstruction. Yang JZ; Hu XZ; Sultana R; Edward Day R; Ichim P Biomed Mater; 2015 Jul; 10(4):045006. PubMed ID: 26154898 [TBL] [Abstract][Full Text] [Related]
30. Novel nanostructured biodegradable polymer matrices fabricated by phase separation techniques for tissue regeneration. Hsu SH; Huang S; Wang YC; Kuo YC Acta Biomater; 2013 Jun; 9(6):6915-27. PubMed ID: 23416581 [TBL] [Abstract][Full Text] [Related]
31. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering. Qian J; Suo A; Jin X; Xu W; Xu M J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779 [TBL] [Abstract][Full Text] [Related]
32. Functionalized poly(γ-Glutamic Acid) fibrous scaffolds for tissue engineering. Gentilini C; Dong Y; May JR; Goldoni S; Clarke DE; Lee BH; Pashuck ET; Stevens MM Adv Healthc Mater; 2012 May; 1(3):308-15. PubMed ID: 23184745 [TBL] [Abstract][Full Text] [Related]
33. Osteoblastic behavior of human bone marrow cells cultured over adsorbed collagen layer, over surface of collagen gels, and inside collagen gels. Fernandes LF; Costa MA; Fernandes MH; Tomás H Connect Tissue Res; 2009; 50(5):336-46. PubMed ID: 19863393 [TBL] [Abstract][Full Text] [Related]
34. A salmon DNA scaffold promotes osteogenesis through activation of sodium-dependent phosphate cotransporters. Katsumata Y; Kajiya H; Okabe K; Fukushima T; Ikebe T Biochem Biophys Res Commun; 2015 Dec; 468(4):622-8. PubMed ID: 26551467 [TBL] [Abstract][Full Text] [Related]
35. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Cai L; Guinn AS; Wang S Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960 [TBL] [Abstract][Full Text] [Related]
36. Osteocompatibility and osteoinductive potential of supermacroporous polyvinyl alcohol-TEOS-agarose-CaCl2 (PTAgC) biocomposite cryogels. Mishra R; Kumar A J Mater Sci Mater Med; 2014 May; 25(5):1327-37. PubMed ID: 24515863 [TBL] [Abstract][Full Text] [Related]
37. Nb-C nanocomposite films with enhanced biocompatibility and mechanical properties for hard-tissue implant applications. Yate L; Coy LE; Gregurec D; Aperador W; Moya SE; Wang G ACS Appl Mater Interfaces; 2015 Mar; 7(11):6351-8. PubMed ID: 25738650 [TBL] [Abstract][Full Text] [Related]
38. Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Depan D; Surya PK; Girase B; Misra RD Acta Biomater; 2011 May; 7(5):2163-75. PubMed ID: 21284959 [TBL] [Abstract][Full Text] [Related]
39. Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds. Brown RF; Day DE; Day TE; Jung S; Rahaman MN; Fu Q Acta Biomater; 2008 Mar; 4(2):387-96. PubMed ID: 17768097 [TBL] [Abstract][Full Text] [Related]
40. Silk-based anisotropical 3D biotextiles for bone regeneration. Ribeiro VP; Silva-Correia J; Nascimento AI; da Silva Morais A; Marques AP; Ribeiro AS; Silva CJ; Bonifácio G; Sousa RA; Oliveira JM; Oliveira AL; Reis RL Biomaterials; 2017 Apr; 123():92-106. PubMed ID: 28161684 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]