These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25842177)

  • 41. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa).
    Gupta M; Qiu X; Wang L; Xie W; Zhang C; Xiong L; Lian X; Zhang Q
    Mol Genet Genomics; 2008 Nov; 280(5):437-52. PubMed ID: 18810495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rice MtN3/saliva/SWEET gene family: Evolution, expression profiling, and sugar transport.
    Yuan M; Zhao J; Huang R; Li X; Xiao J; Wang S
    J Integr Plant Biol; 2014 Jun; 56(6):559-70. PubMed ID: 24456138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.
    Liu W; Ghouri F; Yu H; Li X; Yu S; Shahid MQ; Liu X
    PLoS One; 2017; 12(7):e0180662. PubMed ID: 28700714
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comprehensive survey and evolutionary analysis of genome-wide miRNA genes from ten diploid Oryza species.
    Ganie SA; Debnath AB; Gumi AM; Mondal TK
    BMC Genomics; 2017 Sep; 18(1):711. PubMed ID: 28893199
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptomic screening for cyclotides and other cysteine-rich proteins in the metallophyte Viola baoshanensis.
    Zhang J; Li J; Huang Z; Yang B; Zhang X; Li D; Craik DJ; Baker AJ; Shu W; Liao B
    J Plant Physiol; 2015 Apr; 178():17-26. PubMed ID: 25756919
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes.
    Horiuchi Y; Harushima Y; Fujisawa H; Mochizuki T; Fujita M; Ohyanagi H; Kurata N
    BMC Genomics; 2015 Dec; 16():1099. PubMed ID: 26699716
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Retrogenes in rice (Oryza sativa L. ssp. japonica) exhibit correlated expression with their source genes.
    Sakai H; Mizuno H; Kawahara Y; Wakimoto H; Ikawa H; Kawahigashi H; Kanamori H; Matsumoto T; Itoh T; Gaut BS
    Genome Biol Evol; 2011; 3():1357-68. PubMed ID: 22042334
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development.
    Marshall E; Costa LM; Gutierrez-Marcos J
    J Exp Bot; 2011 Mar; 62(5):1677-86. PubMed ID: 21317212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Variation in a Poaceae-conserved fatty acid metabolic gene cluster controls rice yield by regulating male fertility.
    Yang C; Shen S; Zhan C; Li Y; Zhang R; Lv Y; Yang Z; Zhou J; Shi Y; Liu X; Shi J; Zhang D; Fernie AR; Luo J
    Nat Commun; 2024 Aug; 15(1):6663. PubMed ID: 39107344
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolutionary patterns of chimeric retrogenes in Oryza species.
    Zhou Y; Zhang C
    Sci Rep; 2019 Nov; 9(1):17733. PubMed ID: 31776387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional Mechanisms Underlying the Antimicrobial Activity of the
    Park SC; Kim IR; Hwang JE; Kim JY; Jung YJ; Choi W; Lee Y; Jang MK; Lee JR
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30897830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. IPA1: A New "Green Revolution" Gene?
    Wang B; Wang H
    Mol Plant; 2017 Jun; 10(6):779-781. PubMed ID: 28478096
    [No Abstract]   [Full Text] [Related]  

  • 53. Analyses of Old "Prokaryotic" Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa.
    Singh A; Jethva M; Singla-Pareek SL; Pareek A; Kushwaha HR
    Front Plant Sci; 2016; 7():304. PubMed ID: 27014324
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene fusion as an important mechanism to generate new genes in the genus Oryza.
    Zhou Y; Zhang C; Zhang L; Ye Q; Liu N; Wang M; Long G; Fan W; Long M; Wing RA
    Genome Biol; 2022 Jun; 23(1):130. PubMed ID: 35706016
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hidden weapons of microbial destruction in plant genomes.
    Manners JM
    Genome Biol; 2007; 8(9):225. PubMed ID: 17903311
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Rapid Evolution of De Novo Proteins in Structure and Complex.
    Chen J; Li Q; Xia S; Arsala D; Sosa D; Wang D; Long M
    Genome Biol Evol; 2024 Jun; 16(6):. PubMed ID: 38753069
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Revisiting regulatory coherence: accounting for temporal bias in plant gene co-expression analyses.
    Cai H; Des Marais DL
    New Phytol; 2023 Apr; 238(1):16-24. PubMed ID: 36617750
    [No Abstract]   [Full Text] [Related]  

  • 58. Multigene families and vestigial sequences.
    Loomis WF; Gilpin ME
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2143-7. PubMed ID: 16593678
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gain-of-function mutations: key tools for modifying or designing novel proteins in plant molecular engineering.
    Zhu L; Qian Q
    J Exp Bot; 2020 Feb; 71(4):1203-1205. PubMed ID: 32076728
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ancient Endogenous Pararetroviruses in Oryza Genomes Provide Insights into the Heterogeneity of Viral Gene Macroevolution.
    Chen S; Saito N; Encabo JR; Yamada K; Choi IR; Kishima Y
    Genome Biol Evol; 2018 Oct; 10(10):2686-2696. PubMed ID: 30239708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.