These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
505 related articles for article (PubMed ID: 25842338)
1. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles. Hu K; Huang X; Gao Y; Huang X; Xiao H; McClements DJ Food Chem; 2015 Sep; 182():275-81. PubMed ID: 25842338 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and Characterization of Zein Composite Particles Coated by Caseinate-Pectin Electrostatic Complexes with Improved Structural Stability in Acidic Aqueous Environments. Zhang Y; Wang B; Wu Y; Gao B; Yu LL Molecules; 2019 Jul; 24(14):. PubMed ID: 31373330 [TBL] [Abstract][Full Text] [Related]
3. Core-Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core. Chen S; McClements DJ; Jian L; Han Y; Dai L; Mao L; Gao Y ACS Appl Mater Interfaces; 2019 Oct; 11(41):38103-38115. PubMed ID: 31509373 [TBL] [Abstract][Full Text] [Related]
4. A novel pectin from Akebia trifoliata var. australis fruit peel and its use as a wall-material to coat curcumin-loaded zein nanoparticle. Cai T; Xiao P; Yu N; Zhou Y; Mao J; Peng H; Deng S Int J Biol Macromol; 2020 Jun; 152():40-49. PubMed ID: 32092419 [TBL] [Abstract][Full Text] [Related]
5. Tannic acid-fortified zein-pectin nanoparticles: Stability, properties, antioxidant activity, and in vitro digestion. Liang X; Cao K; Li W; Li X; McClements DJ; Hu K Food Res Int; 2021 Jul; 145():110425. PubMed ID: 34112427 [TBL] [Abstract][Full Text] [Related]
6. Co-encapsulation of Epigallocatechin Gallate (EGCG) and Curcumin by Two Proteins-Based Nanoparticles: Role of EGCG. Yan X; Zhang X; McClements DJ; Zou L; Liu X; Liu F J Agric Food Chem; 2019 Dec; 67(48):13228-13236. PubMed ID: 31610115 [TBL] [Abstract][Full Text] [Related]
7. Oxidized Dextran as a Macromolecular Crosslinker Stabilizes the Zein/Caseinate Nanocomplex for the Potential Oral Delivery of Curcumin. Rodriguez NJ; Hu Q; Luo Y Molecules; 2019 Nov; 24(22):. PubMed ID: 31717559 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of curcumin: pectin extracted by high-speed shearing from passion fruit (Passiflora edulis f. flavicarpa) peel. Li X; Lin Y; Huang Y; Li X; An F; Song H; Huang Q J Sci Food Agric; 2024 Aug; 104(11):6573-6583. PubMed ID: 38520286 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles. Huang X; Huang X; Gong Y; Xiao H; McClements DJ; Hu K Food Res Int; 2016 Sep; 87():1-9. PubMed ID: 29606228 [TBL] [Abstract][Full Text] [Related]
10. Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties. Li Z; Lin Q; McClements DJ; Fu Y; Xie H; Li T; Chen G Food Chem; 2021 Sep; 355():129686. PubMed ID: 33799264 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and characterization of pectin-zein nanoparticles containing tanshinone using anti-solvent precipitation method. Elmizadeh A; Goli SAH; Mohammadifar MA; Rahimmalek M Int J Biol Macromol; 2024 Mar; 260(Pt 1):129463. PubMed ID: 38237820 [TBL] [Abstract][Full Text] [Related]
12. Pectin-coated whey protein isolate/zein self-aggregated nanoparticles as curcumin delivery vehicles: Effects of heating, pH, and adding sequence. Gu X; Li W; Jiang X; Chang C; Wu J Int J Biol Macromol; 2024 Feb; 258(Pt 1):128892. PubMed ID: 38134988 [TBL] [Abstract][Full Text] [Related]
13. Zein/caseinate/pectin complex nanoparticles: Formation and characterization. Chang C; Wang T; Hu Q; Luo Y Int J Biol Macromol; 2017 Nov; 104(Pt A):117-124. PubMed ID: 28579466 [TBL] [Abstract][Full Text] [Related]
14. Mixing ratio dependent complex coacervation versus bicontinuous gelation of pectin with in situ formed zein nanoparticles. Kaushik P; Rawat K; Aswal VK; Kohlbrecher J; Bohidar HB Soft Matter; 2018 Aug; 14(31):6463-6475. PubMed ID: 30051132 [TBL] [Abstract][Full Text] [Related]
15. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin. Yan JK; Qiu WY; Wang YY; Wu JY J Agric Food Chem; 2017 Jul; 65(28):5720-5730. PubMed ID: 28657749 [TBL] [Abstract][Full Text] [Related]
16. Preparation, characterization, and antioxidant activity of zein nanoparticles stabilized by whey protein nanofibrils. Liu Q; Cheng J; Sun X; Guo M Int J Biol Macromol; 2021 Jan; 167():862-870. PubMed ID: 33181219 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Meng R; Wu Z; Xie QT; Cheng JS; Zhang B Food Chem; 2021 Mar; 340():127893. PubMed ID: 32889202 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and Characterization of Layer-by-Layer Composite Nanoparticles Based on Zein and Hyaluronic Acid for Codelivery of Curcumin and Quercetagetin. Chen S; Han Y; Huang J; Dai L; Du J; McClements DJ; Mao L; Liu J; Gao Y ACS Appl Mater Interfaces; 2019 May; 11(18):16922-16933. PubMed ID: 30985111 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of curcumin-loaded composite nanoparticles based on high-hydrostatic-pressure-treated zein and pectin: Interaction mechanism, stability, and bioaccessibility. Wang N; Fan H; Wang J; Wang H; Liu T Food Chem; 2024 Jul; 446():138286. PubMed ID: 38428073 [TBL] [Abstract][Full Text] [Related]
20. Calcium ions induced ι-carrageenan-based gel-coating deposited on zein nanoparticles for encapsulating the curcumin. Ge Q; Rong S; Yin C; McClements DJ; Fu Q; Li Q; Han Y; Liu F; Wang S; Chen S Food Chem; 2024 Feb; 434():137488. PubMed ID: 37741234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]