These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
519 related articles for article (PubMed ID: 25842338)
21. Fabrication and characterization of zein nanoparticles by dextran sulfate coating as vehicles for delivery of curcumin. Yuan Y; Li H; Zhu J; Liu C; Sun X; Wang D; Xu Y Int J Biol Macromol; 2020 May; 151():1074-1083. PubMed ID: 31739020 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of Zein/Pectin Hybrid Particle-Stabilized Pickering High Internal Phase Emulsions with Robust and Ordered Interface Architecture. Zhou FZ; Huang XN; Wu ZL; Yin SW; Zhu JH; Tang CH; Yang XQ J Agric Food Chem; 2018 Oct; 66(42):11113-11123. PubMed ID: 30272970 [TBL] [Abstract][Full Text] [Related]
23. Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Chen S; Han Y; Sun C; Dai L; Yang S; Wei Y; Mao L; Yuan F; Gao Y Carbohydr Polym; 2018 Dec; 201():599-607. PubMed ID: 30241858 [TBL] [Abstract][Full Text] [Related]
24. Amphiphilic zein hydrolysate as a novel nano-delivery vehicle for curcumin. Wang YH; Wang JM; Yang XQ; Guo J; Lin Y Food Funct; 2015 Aug; 6(8):2636-45. PubMed ID: 26134524 [TBL] [Abstract][Full Text] [Related]
25. Curcumin loaded Zein-alginate nanogels with "core-shell" structure: formation, characterization and simulated digestion. Ding R; Zhang M; Zhu Q; Qu Y; Jia X; Yin L Int J Biol Macromol; 2023 Nov; 251():126201. PubMed ID: 37562470 [TBL] [Abstract][Full Text] [Related]
26. Food Protein Based Core-Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in Vitro and in Vivo Functional Performance of Zein Nanocarriers. Alqahtani MS; Islam MS; Podaralla S; Kaushik RS; Reineke J; Woyengo T; Perumal O Mol Pharm; 2017 Mar; 14(3):757-769. PubMed ID: 28103046 [TBL] [Abstract][Full Text] [Related]
27. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Dai L; Sun C; Li R; Mao L; Liu F; Gao Y Food Chem; 2017 Dec; 237():1163-1171. PubMed ID: 28763965 [TBL] [Abstract][Full Text] [Related]
28. Role of zein incorporation on hydrophobic drug-loading capacity and colloidal stability of phospholipid nanoparticles. Hong SS; Thapa RK; Kim JH; Kim SY; Kim JO; Kim JK; Choi HG; Lim SJ Colloids Surf B Biointerfaces; 2018 Nov; 171():514-521. PubMed ID: 30096472 [TBL] [Abstract][Full Text] [Related]
29. Preparation, properties and interaction of curcumin loaded zein/HP-β-CD nanoparticles based on electrostatic interactions by antisolvent co-precipitation. Zhang Z; Li X; Sang S; Julian McClements D; Chen L; Long J; Jiao A; Jin Z; Qiu C Food Chem; 2023 Mar; 403():134344. PubMed ID: 36183473 [TBL] [Abstract][Full Text] [Related]
30. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Sun C; Xu C; Mao L; Wang D; Yang J; Gao Y Food Chem; 2017 Aug; 228():656-667. PubMed ID: 28317777 [TBL] [Abstract][Full Text] [Related]
32. Fabrication, characterization and in vitro cell exposure study of zein-chitosan nanoparticles for co-delivery of curcumin and berberine. Ghobadi-Oghaz N; Asoodeh A; Mohammadi M Int J Biol Macromol; 2022 Apr; 204():576-586. PubMed ID: 35157902 [TBL] [Abstract][Full Text] [Related]
33. One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin. Hou L; Zhang L; Yu C; Chen J; Ye X; Zhang F; Linhardt RJ; Chen S; Pan H Foods; 2023 Apr; 12(8):. PubMed ID: 37107418 [TBL] [Abstract][Full Text] [Related]
34. High dispersity, stability and bioaccessibility of curcumin by assembling with deamidated zein peptide. Li L; Yao P Food Chem; 2020 Jul; 319():126577. PubMed ID: 32172044 [TBL] [Abstract][Full Text] [Related]
35. Design and Characterization of a Novel Core-Shell Nano Delivery System Based on Zein and Carboxymethylated Short-Chain Amylose for Encapsulation of Curcumin. Lin Z; Zhan L; Qin K; Li Y; Qin Y; Yang L; Sun Q; Ji N; Xie F Foods; 2024 Jun; 13(12):. PubMed ID: 38928779 [TBL] [Abstract][Full Text] [Related]
36. Self-assembled composite nanoparticles based on zein as delivery vehicles of curcumin: role of chondroitin sulfate. Liu C; Yuan Y; Ma M; Zhang S; Wang S; Li H; Xu Y; Wang D Food Funct; 2020 Jun; 11(6):5377-5388. PubMed ID: 32469014 [TBL] [Abstract][Full Text] [Related]
37. Preparation and characterization of a novel conformed bipolymer paclitaxel-nanoparticle using tea polysaccharides and zein. Li S; Wang X; Li W; Yuan G; Pan Y; Chen H Carbohydr Polym; 2016 Aug; 146():52-7. PubMed ID: 27112850 [TBL] [Abstract][Full Text] [Related]
38. Formation, structural characterization, stability and in vitro bioaccessibility of 7,8-dihydroxyflavone loaded zein-/sophorolipid composite nanoparticles: effect of sophorolipid under two blending sequences. Chen Y; Xia G; Zhao Z; Xue F; Chen C; Zhang Y Food Funct; 2020 Feb; 11(2):1810-1825. PubMed ID: 32057043 [TBL] [Abstract][Full Text] [Related]
39. Fabrication and characterization of zein-tea polyphenols-pectin ternary complex nanoparticles as an effective hyperoside delivery system: Formation mechanism, physicochemical stability, and in vitro release property. Wang X; Li M; Liu F; Peng F; Li F; Lou X; Jin Y; Wang J; Xu H Food Chem; 2021 Dec; 364():130335. PubMed ID: 34167005 [TBL] [Abstract][Full Text] [Related]
40. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility. Yuan Y; Huang J; He S; Ma M; Wang D; Xu Y Food Funct; 2021 Jul; 12(13):5719-5730. PubMed ID: 34115089 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]