BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2584302)

  • 1. Separation of C-17 fatty acid esters of 17 beta-estradiol by reversed-phase high-performance liquid chromatography.
    Paris A; Sutra JF; Rao D
    J Chromatogr; 1989 Sep; 493(2):367-72. PubMed ID: 2584302
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of estradiol-17 beta fatty acyl esters by microsomes derived from bovine liver and adrenals.
    Paris A; Rao D
    J Steroid Biochem; 1989 Sep; 33(3):465-72. PubMed ID: 2779237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of carotenol fatty acid esters by high-performance liquid chromatography.
    Khachik F; Beecher GR
    J Chromatogr; 1988 Sep; 449(1):119-33. PubMed ID: 3235576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulatory effect of clofibrate and gemfibrozil administration on the formation of fatty acid esters of estradiol by rat liver microsomes.
    Xu S; Zhu BT; Conney AH
    J Pharmacol Exp Ther; 2001 Jan; 296(1):188-97. PubMed ID: 11123380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The isolation and characterization of estradiol-fatty acid esters in human ovarian follicular fluid. Identification of an endogenous long-lived and potent family of estrogens.
    Larner JM; Pahuja SL; Shackleton CH; McMurray WJ; Giordano G; Hochberg RB
    J Biol Chem; 1993 Jul; 268(19):13893-9. PubMed ID: 8314757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation and estimation of retinyl fatty acyl esters in tissues of normal rat by high-performance liquid chromatography.
    Bhat PV; Lacroix A
    J Chromatogr; 1983 Feb; 272(2):269-78. PubMed ID: 6833424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation and quantitation of fatty acids by high-performance liquid chromatography.
    Korte K; Chien KR; Casey ML
    J Chromatogr; 1986 Mar; 375(2):225-31. PubMed ID: 3700549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of hypolipidaemic drugs to acyl-coenzyme A thioesters.
    Bronfman M; Amigo L; Morales MN
    Biochem J; 1986 Nov; 239(3):781-4. PubMed ID: 3827829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the binding affinities of acyl-CoA-binding protein and fatty-acid-binding protein for long-chain acyl-CoA esters.
    Rasmussen JT; Börchers T; Knudsen J
    Biochem J; 1990 Feb; 265(3):849-55. PubMed ID: 2306218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transacylation as a chain-termination mechanism in fatty acid synthesis by mammalian fatty acid synthetase. Synthesis of medium-chain-length (C8-C12) acyl-CoA esters by goat mammary-gland fatty acid synthetase.
    Knudsen J; Grunnet I
    Biochem J; 1982 Jan; 202(1):139-43. PubMed ID: 7082303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance liquid chromatographic separation of potential hydroxylated metabolites of estradiol 17-sulfate by female rat liver microsomes.
    Itoh Y; Takanashi K; Itoh S; Yoshizawa I
    Anal Sci; 2001 May; 17(5):659-61. PubMed ID: 11708150
    [No Abstract]   [Full Text] [Related]  

  • 12. Reversed-phase high-performance liquid chromatographic separation of lutein and lutein fatty acid esters from marigold flower petal powder.
    Rivas JD
    J Chromatogr; 1989 Mar; 464(2):442-7. PubMed ID: 2722992
    [No Abstract]   [Full Text] [Related]  

  • 13. Fatty acyl-CoA esters and the permeability of rat liver microsomal vesicles.
    Bánhegyi G; Csala M; Mandl J; Burchell A; Burchell B; Marcolongo P; Fulceri R; Benedetti A
    Biochem J; 1996 Nov; 320 ( Pt 1)(Pt 1):343-4. PubMed ID: 8947507
    [No Abstract]   [Full Text] [Related]  

  • 14. Separation and quantitative analysis of some carotenoid fatty acid esters of fruits by liquid chromatography.
    Philip T; Chen TS
    J Chromatogr; 1988 Jan; 435(1):113-26. PubMed ID: 3350888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance liquid chromatography separation of hydroxylated estradiol metabolites: formation of estradiol metabolites by liver microsomes from male and female rats.
    Suchar LA; Chang RL; Rosen RT; Lech J; Conney AH
    J Pharmacol Exp Ther; 1995 Jan; 272(1):197-206. PubMed ID: 7815333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of fatty-acyl-CoAs on the elongation of saturated fatty acid in porcine aorta microsomes.
    Murakami K; Yoshida S; Takeshita M
    Biochem Int; 1990; 21(2):297-304. PubMed ID: 2403369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product or inhibitor.
    Rasmussen JT; Rosendal J; Knudsen J
    Biochem J; 1993 Jun; 292 ( Pt 3)(Pt 3):907-13. PubMed ID: 8318018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance liquid chromatography of fatty acid isopropylidene hydrazides and its application in lipid analysis.
    Agrawal VP; Schulte E
    Anal Biochem; 1983 Jun; 131(2):356-9. PubMed ID: 6412591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of the reaction product of [1-14C]stearoyl-CoA elongation by etiolated leek seeding microsomes.
    Lessire R; Juguelin H; Moreau P; Cassagne C
    Arch Biochem Biophys; 1985 May; 239(1):260-9. PubMed ID: 4004258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and reversed-phase high-performance liquid chromatography of p-nitrobenzyl esters of monohydroxy fatty acids.
    Bandi ZL; Reynolds ES
    J Chromatogr; 1985 Jul; 329(1):57-63. PubMed ID: 3926799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.