BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 25843045)

  • 1. Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines.
    Shaltouki A; Sivapatham R; Pei Y; Gerencser AA; Momčilović O; Rao MS; Zeng X
    Stem Cell Reports; 2015 May; 4(5):847-59. PubMed ID: 25843045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism.
    Okarmus J; Havelund JF; Ryding M; Schmidt SI; Bogetofte H; Heon-Roberts R; Wade-Martins R; Cowley SA; Ryan BJ; Færgeman NJ; Hyttel P; Meyer M
    Stem Cell Reports; 2021 Jun; 16(6):1510-1526. PubMed ID: 34048689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.
    Chung SY; Kishinevsky S; Mazzulli JR; Graziotto J; Mrejeru A; Mosharov EV; Puspita L; Valiulahi P; Sulzer D; Milner TA; Taldone T; Krainc D; Studer L; Shim JW
    Stem Cell Reports; 2016 Oct; 7(4):664-677. PubMed ID: 27641647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations.
    Momcilovic O; Sivapatham R; Oron TR; Meyer M; Mooney S; Rao MS; Zeng X
    PLoS One; 2016; 11(5):e0154890. PubMed ID: 27191603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations.
    Gautier CA; Erpapazoglou Z; Mouton-Liger F; Muriel MP; Cormier F; Bigou S; Duffaure S; Girard M; Foret B; Iannielli A; Broccoli V; Dalle C; Bohl D; Michel PP; Corvol JC; Brice A; Corti O
    Hum Mol Genet; 2016 Jul; 25(14):2972-2984. PubMed ID: 27206984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila.
    Zanon A; Kalvakuri S; Rakovic A; Foco L; Guida M; Schwienbacher C; Serafin A; Rudolph F; Trilck M; Grünewald A; Stanslowsky N; Wegner F; Giorgio V; Lavdas AA; Bodmer R; Pramstaller PP; Klein C; Hicks AA; Pichler I; Seibler P
    Hum Mol Genet; 2017 Jul; 26(13):2412-2425. PubMed ID: 28379402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons.
    Suzuki S; Akamatsu W; Kisa F; Sone T; Ishikawa KI; Kuzumaki N; Katayama H; Miyawaki A; Hattori N; Okano H
    Biochem Biophys Res Commun; 2017 Jan; 483(1):88-93. PubMed ID: 28057485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.
    Pinto M; Nissanka N; Moraes CT
    J Neurosci; 2018 Jan; 38(4):1042-1053. PubMed ID: 29222404
    [No Abstract]   [Full Text] [Related]  

  • 9. Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation.
    Bogetofte H; Jensen P; Okarmus J; Schmidt SI; Agger M; Ryding M; Nørregaard P; Fenger C; Zeng X; Graakjær J; Ryan BJ; Wade-Martins R; Larsen MR; Meyer M
    Neurobiol Dis; 2019 Dec; 132():104581. PubMed ID: 31445161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function.
    Hwang CJ; Kim YE; Son DJ; Park MH; Choi DY; Park PH; Hellström M; Han SB; Oh KW; Park EK; Hong JT
    Redox Biol; 2017 Apr; 11():456-468. PubMed ID: 28086194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson's disease-like motor dysfunction.
    Suda Y; Kuzumaki N; Sone T; Narita M; Tanaka K; Hamada Y; Iwasawa C; Shibasaki M; Maekawa A; Matsuo M; Akamatsu W; Hattori N; Okano H; Narita M
    Mol Brain; 2018 Feb; 11(1):6. PubMed ID: 29458391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of hiPSCs (JUCGRMi003-A) from a patient with Parkinson's disease with PARK2 mutation.
    Ishikawa KI; Okuzumi A; Yoshino H; Hattori N; Akamatsu W
    Stem Cell Res; 2024 Apr; 76():103323. PubMed ID: 38309147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue.
    Imaizumi Y; Okada Y; Akamatsu W; Koike M; Kuzumaki N; Hayakawa H; Nihira T; Kobayashi T; Ohyama M; Sato S; Takanashi M; Funayama M; Hirayama A; Soga T; Hishiki T; Suematsu M; Yagi T; Ito D; Kosakai A; Hayashi K; Shouji M; Nakanishi A; Suzuki N; Mizuno Y; Mizushima N; Amagai M; Uchiyama Y; Mochizuki H; Hattori N; Okano H
    Mol Brain; 2012 Oct; 5():35. PubMed ID: 23039195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced pluripotent stem cell (iPSC)-derived dopaminergic models of Parkinson's disease.
    Beevers JE; Caffrey TM; Wade-Martins R
    Biochem Soc Trans; 2013 Dec; 41(6):1503-8. PubMed ID: 24256244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation.
    Okarmus J; Bogetofte H; Schmidt SI; Ryding M; García-López S; Ryan BJ; Martínez-Serrano A; Hyttel P; Meyer M
    Sci Rep; 2020 Jun; 10(1):10278. PubMed ID: 32581291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Therapeutic Agents for Amelioration of Mitochondrial Clearance Disorder in Neurons of Familial Parkinson Disease.
    Yamaguchi A; Ishikawa KI; Inoshita T; Shiba-Fukushima K; Saiki S; Hatano T; Mori A; Oji Y; Okuzumi A; Li Y; Funayama M; Imai Y; Hattori N; Akamatsu W
    Stem Cell Reports; 2020 Jun; 14(6):1060-1075. PubMed ID: 32470327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-specific overexpression of COMT in dopaminergic neurons of Parkinson's disease.
    Kuzumaki N; Suda Y; Iwasawa C; Narita M; Sone T; Watanabe M; Maekawa A; Matsumoto T; Akamatsu W; Igarashi K; Tamura H; Takeshima H; Tawfik VL; Ushijima T; Hattori N; Okano H; Narita M
    Brain; 2019 Jun; 142(6):1675-1689. PubMed ID: 31135049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of a PARK2 homozygous knockout induced pluripotent stem cell line (GIBHi002-A-1) with two common isoforms abolished.
    Zhang M; Ibañez DP; Fan W; Liu H; Zhong X; Wang X; Li Y; Md Abdul M; Li W; Li Y; Ward C; Chen S; Wang D; Qin B; Esteban MA; Zhao P; Luo Z
    Stem Cell Res; 2019 Dec; 41():101602. PubMed ID: 31698191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson's Disease Models.
    Oh CK; Sultan A; Platzer J; Dolatabadi N; Soldner F; McClatchy DB; Diedrich JK; Yates JR; Ambasudhan R; Nakamura T; Jaenisch R; Lipton SA
    Cell Rep; 2017 Nov; 21(8):2171-2182. PubMed ID: 29166608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkin maintains mitochondrial levels of the protective Parkinson's disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10.
    Bertolin G; Jacoupy M; Traver S; Ferrando-Miguel R; Saint Georges T; Grenier K; Ardila-Osorio H; Muriel MP; Takahashi H; Lees AJ; Gautier C; Guedin D; Coge F; Fon EA; Brice A; Corti O
    Cell Death Differ; 2015 Oct; 22(10):1563-76. PubMed ID: 25591737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.