These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 25843073)

  • 1. Regulation of gastric electrical and mechanical activity by cholinesterases in mice.
    Worth AA; Forrest AS; Peri LE; Ward SM; Hennig GW; Sanders KM
    J Neurogastroenterol Motil; 2015 Mar; 21(2):200-16. PubMed ID: 25843073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostaglandin regulation of gastric slow waves and peristalsis.
    Forrest AS; Hennig GW; Jokela-Willis S; Park CD; Sanders KM
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1180-90. PubMed ID: 19359421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural regulation of slow-wave frequency in the murine gastric antrum.
    Forrest AS; Ordög T; Sanders KM
    Am J Physiol Gastrointest Liver Physiol; 2006 Mar; 290(3):G486-95. PubMed ID: 16166340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of electrical pacemaking by interstitial cells of Cajal and gastric dysrhythmias in W/W mutant mice.
    Ordög T; Baldo M; Danko R; Sanders KM
    Gastroenterology; 2002 Dec; 123(6):2028-40. PubMed ID: 12454859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal.
    Kim TW; Koh SD; Ordög T; Ward SM; Sanders KM
    J Physiol; 2003 Jan; 546(Pt 2):415-25. PubMed ID: 12527728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage-gated Ca2+ currents are necessary for slow-wave propagation in the canine gastric antrum.
    Bayguinov O; Ward SM; Kenyon JL; Sanders KM
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1645-59. PubMed ID: 17855773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca
    Baker SA; Hwang SJ; Blair PJ; Sireika C; Wei L; Ro S; Ward SM; Sanders KM
    Cell Calcium; 2021 Nov; 99():102472. PubMed ID: 34537580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gastric electrical stimulation: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2006; 6(16):1-79. PubMed ID: 23074486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial cells of Cajal mediate mechanosensitive responses in the stomach.
    Won KJ; Sanders KM; Ward SM
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14913-8. PubMed ID: 16204383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of pacemaker activity in the human stomach.
    Rhee PL; Lee JY; Son HJ; Kim JJ; Rhee JC; Kim S; Koh SD; Hwang SJ; Sanders KM; Ward SM
    J Physiol; 2011 Dec; 589(Pt 24):6105-18. PubMed ID: 22005683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical slow wave activity of the cat stomach: its frequency gradient and the effect of indomethacin.
    Xue S; Valdez DT; Tremblay L; Collman PI; Diamant NE
    Neurogastroenterol Motil; 1995 Sep; 7(3):157-67. PubMed ID: 8536160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis.
    Ahmed MA; Venugopal S; Jung R
    PLoS Comput Biol; 2021 Dec; 17(12):e1009644. PubMed ID: 34871315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and propagation of gastric slow waves.
    van Helden DF; Laver DR; Holdsworth J; Imtiaz MS
    Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of slow waves by transmural nerve stimulation of smooth muscle tissue isolated from the corpus of the guinea-pig stomach.
    Tanaka C; Domae K; Hashitani H; Suzuki H
    J Smooth Muscle Res; 2009 Jun; 45(2-3):109-24. PubMed ID: 19602855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement based artifacts may contaminate extracellular electrical recordings from GI muscles.
    Bayguinov O; Hennig GW; Sanders KM
    Neurogastroenterol Motil; 2011 Nov; 23(11):1029-42, e498. PubMed ID: 21951699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acotiamide Hydrochloride, a Therapeutic Agent for Functional Dyspepsia, Enhances Acetylcholine-induced Contraction via Inhibition of Acetylcholinesterase Activity in Circular Muscle Strips of Guinea Pig Stomach.
    Ito K; Kawachi M; Matsunaga Y; Hori Y; Ozaki T; Nagahama K; Hirayama M; Kawabata Y; Shiraishi Y; Takei M; Tanaka T
    Drug Res (Stuttg); 2016 Apr; 66(4):196-202. PubMed ID: 26418413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial cells of cajal generate electrical slow waves in the murine stomach.
    Ordög T; Ward SM; Sanders KM
    J Physiol; 1999 Jul; 518(Pt 1):257-69. PubMed ID: 10373707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent calcium entry underlies propagation of slow waves in canine gastric antrum.
    Ward SM; Dixon RE; de Faoite A; Sanders KM
    J Physiol; 2004 Dec; 561(Pt 3):793-810. PubMed ID: 15498805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
    Egbuji JU; O'Grady G; Du P; Cheng LK; Lammers WJ; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2010 Oct; 22(10):e292-300. PubMed ID: 20618830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.