BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25843146)

  • 1. Organic contamination of highly oriented pyrolytic graphite as studied by scanning electrochemical microscopy.
    Nioradze N; Chen R; Kurapati N; Khvataeva-Domanov A; Mabic S; Amemiya S
    Anal Chem; 2015 May; 87(9):4836-43. PubMed ID: 25843146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of Asymmetry of Paired Nanogap Voltammograms Based on Scanning Electrochemical Microscopy: Contamination Not Adsorption.
    Chen R; Balla RJ; Li Z; Liu H; Amemiya S
    Anal Chem; 2016 Aug; 88(16):8323-31. PubMed ID: 27426255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry of ferrocene derivatives on highly oriented pyrolytic graphite (HOPG): quantification and impacts of surface adsorption.
    Cuharuc AS; Zhang G; Unwin PR
    Phys Chem Chem Phys; 2016 Feb; 18(6):4966-77. PubMed ID: 26812483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning Electrochemical Microscopy of Carbon Nanomaterials and Graphite.
    Amemiya S; Chen R; Nioradze N; Kim J
    Acc Chem Res; 2016 Sep; 49(9):2007-14. PubMed ID: 27602588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements.
    Tan SY; Zhang J; Bond AM; Macpherson JV; Unwin PR
    Anal Chem; 2016 Mar; 88(6):3272-80. PubMed ID: 26877069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.
    Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE
    Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine.
    Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR
    Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new view of electrochemistry at highly oriented pyrolytic graphite.
    Patel AN; Collignon MG; O'Connell MA; Hung WO; McKelvey K; Macpherson JV; Unwin PR
    J Am Chem Soc; 2012 Dec; 134(49):20117-30. PubMed ID: 23145936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemistry of Fe
    Zhang G; Tan SY; Patel AN; Unwin PR
    Phys Chem Chem Phys; 2016 Nov; 18(47):32387-32395. PubMed ID: 27858021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical oxidation of dihydronicotinamide adenine dinucleotide (NADH): comparison of highly oriented pyrolytic graphite (HOPG) and polycrystalline boron-doped diamond (pBDD) electrodes.
    Maddar FM; Lazenby RA; Patel AN; Unwin PR
    Phys Chem Chem Phys; 2016 Sep; 18(38):26404-26411. PubMed ID: 27711627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models.
    Zhang G; Cuharuc AS; Güell AG; Unwin PR
    Phys Chem Chem Phys; 2015 May; 17(17):11827-38. PubMed ID: 25869656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses.
    Li Q; Batchelor-McAuley C; Compton RG
    J Phys Chem B; 2010 Jun; 114(21):7423-8. PubMed ID: 20446746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltammetric Measurement of Adsorption Isotherm for Ferrocene Derivatives on Highly Oriented Pyrolytic Graphite.
    Kurapati N; Pathirathna P; Chen R; Amemiya S
    Anal Chem; 2018 Nov; 90(22):13632-13639. PubMed ID: 30350623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Inhibitory Electron Transfer of the Co(III)/Co(II)-Complex Redox Couple at Pristine Carbon Electrode.
    Chen R; Najarian AM; Kurapati N; Balla RJ; Oleinick A; Svir I; Amatore C; McCreery RL; Amemiya S
    Anal Chem; 2018 Sep; 90(18):11115-11123. PubMed ID: 30118206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive supports for combined AFM-SECM on biological membranes.
    Frederix PL; Bosshart PD; Akiyama T; Chami M; Gullo MR; Blackstock JJ; Dooleweerdt K; de Rooij NF; Staufer U; Engel A
    Nanotechnology; 2008 Sep; 19(38):384004. PubMed ID: 21832564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faradaic phase transition of dibenzyl viologen on an HOPG electrode surface studied by in situ electrochemical STM and electroreflectance spectroscopy.
    Higashi T; Shigemitsu Y; Sagara T
    Langmuir; 2011 Nov; 27(22):13910-7. PubMed ID: 21955062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the conformation and 2D-distribution of pyrene-terminated redox-labeled poly(ethylene glycol) chains end-adsorbed on HOPG using cyclic voltammetry and atomic force electrochemical microscopy.
    Anne A; Bahri MA; Chovin A; Demaille C; Taofifenua C
    Phys Chem Chem Phys; 2014 Mar; 16(10):4642-52. PubMed ID: 24464239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale mapping of catalytic hotspots on Fe, N-modified HOPG by scanning electrochemical microscopy-atomic force microscopy.
    Kolagatla S; Subramanian P; Schechter A
    Nanoscale; 2018 Apr; 10(15):6962-6970. PubMed ID: 29610805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic-complementary peptide-modified highly ordered pyrolytic graphite electrode for biosensor application.
    Yang H; Fung SY; Sun W; Mikkelsen S; Pritzker M; Chen P
    Biotechnol Prog; 2008; 24(4):964-71. PubMed ID: 19194905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.
    Tanaka M; Sawaguchi T; Sato Y; Yoshioka K; Niwa O
    Langmuir; 2011 Jan; 27(1):170-8. PubMed ID: 21117684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.