These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 25843174)
21. Control of mosquitoes in catch basins in Connecticut with Bacillus thuringiensis israelensis, Bacillus sphaericus, [corrected] and spinosad. Anderson JF; Ferrandino FJ; Dingman DW; Main AJ; Andreadis TG; Becnel JJ J Am Mosq Control Assoc; 2011 Mar; 27(1):45-55. PubMed ID: 21476447 [TBL] [Abstract][Full Text] [Related]
22. Survey of cyclopids (Crustacea, Copepoda) in Brazil and preliminary screening of their potential as dengue vector predators. dos Santos LU; de Andrade CF Rev Saude Publica; 1997 Jun; 31(3):221-6. PubMed ID: 9515258 [TBL] [Abstract][Full Text] [Related]
23. Predatory efficacy of five locally available copepods on Aedes larvae under laboratory settings: An approach towards bio-control of dengue in Sri Lanka. Udayanga L; Ranathunge T; Iqbal MCM; Abeyewickreme W; Hapugoda M PLoS One; 2019; 14(5):e0216140. PubMed ID: 31136574 [TBL] [Abstract][Full Text] [Related]
24. Field trials of VectoLex CG, a Bacillus sphaericus larvicide, in Illinois waste tires and catch basins. Siegel JP; Novak RJ J Am Mosq Control Assoc; 1997 Dec; 13(4):305-10. PubMed ID: 9474554 [TBL] [Abstract][Full Text] [Related]
25. Field observation on the efficacy of Toxorhynchites splendens (Wiedemann) as a biocontrol agent against Aedes albopictus (Skuse) larvae in a cemetery. Nyamah MA; Sulaiman S; Omar B Trop Biomed; 2011 Aug; 28(2):312-9. PubMed ID: 22041750 [TBL] [Abstract][Full Text] [Related]
26. Integrated management of waste tire mosquitoes utilizing Mesocyclops longisetus (Copepoda: Cyclopidae), Bacillus thuringiensis var. israelensis, Bacillus sphaericus, and methoprene. Tietze NS; Hester PG; Shaffer KR; Prescott SJ; Schreiber ET J Am Mosq Control Assoc; 1994 Sep; 10(3):363-73. PubMed ID: 7807078 [TBL] [Abstract][Full Text] [Related]
27. Guppies as predators of common mosquito larvae in Malaysia. Saleeza SN; Norma-Rashid Y; Sofian-Azirun M Southeast Asian J Trop Med Public Health; 2014 Mar; 45(2):299-308. PubMed ID: 24968669 [TBL] [Abstract][Full Text] [Related]
28. Effects of a Red Marker Dye on Aedes and Culex Larvae: Are There Implications for Operational Mosquito Control? Unlu I; Leisnham PT; Williams GM; Klingler K; Dow GW; Kirchoff N; Jin S; Delisi N; Montenegro K; Faraji A J Am Mosq Control Assoc; 2015 Dec; 31(4):375-9. PubMed ID: 26675462 [TBL] [Abstract][Full Text] [Related]
29. A difference in larval mosquito size allows a biocontrol agent to target the invasive species. Russell MC Ecol Evol; 2023 Jul; 13(7):e10294. PubMed ID: 37441096 [TBL] [Abstract][Full Text] [Related]
30. Spatial distribution and pyrethroid susceptibility of mosquito larvae collected from catch basins in parks in Nagasaki city, Nagasaki, Japan. Kawada H; Maekawa Y; Abe M; Ohashi K; Ohba SY; Takagi M Jpn J Infect Dis; 2010 Jan; 63(1):19-24. PubMed ID: 20093757 [TBL] [Abstract][Full Text] [Related]
31. [Conduct of the oviposition of Aedes aegypti (L.) in the presence of Macrocyclops albidus (J.) and Bacillus thuringiensis var. israelensis under lab conditions]. Rodríguez Rodríguez J; Menéndez Díaz Z; García García I; Díaz Pérez M; Sánchez JE; Gato Armas R Rev Cubana Med Trop; 2007; 59(1):73-5. PubMed ID: 23427425 [TBL] [Abstract][Full Text] [Related]
32. Field Trial To Evaluate Two Different Procedures For Monitoring the Efficacy of Aquatain® Against Culex pipiens and Aedes albopictus IN CATCH BASINS. Drago A; Simonato G; Vettore S; Martini S; Di Regalbono AF; Cassini R J Am Mosq Control Assoc; 2017 Dec; 33(4):318-323. PubMed ID: 29369023 [TBL] [Abstract][Full Text] [Related]
33. Asymmetrical competition and patterns of abundance of Aedes albopictus and Culex pipiens (Diptera: Culicidae). Costanzo KS; Mormann K; Juliano SA J Med Entomol; 2005 Jul; 42(4):559-70. PubMed ID: 16119544 [TBL] [Abstract][Full Text] [Related]
34. Implications of increasing temperature stress for predatory biocontrol of vector mosquitoes. Buxton M; Nyamukondiwa C; Dalu T; Cuthbert RN; Wasserman RJ Parasit Vectors; 2020 Dec; 13(1):604. PubMed ID: 33261665 [TBL] [Abstract][Full Text] [Related]
35. Prey choice by a freshwater copepod on larval Emerson LC; Holmes CJ; Cáceres CE J Vector Ecol; 2021 Dec; 46(2):200-206. PubMed ID: 35230024 [TBL] [Abstract][Full Text] [Related]
36. Predation on the invasive mosquito Aedes japonicus (Diptera: Culicidae) by native copepod species in Germany. Früh L; Kampen H; Schaub GA; Werner D J Vector Ecol; 2019 Dec; 44(2):241-247. PubMed ID: 31729795 [TBL] [Abstract][Full Text] [Related]
37. Differential predation of the planarian Dugesia tigrina on two mosquito species under laboratory conditions. Melo AS; Andrade CF J Am Mosq Control Assoc; 2001 Mar; 17(1):81-3. PubMed ID: 11345426 [TBL] [Abstract][Full Text] [Related]
38. Laboratory evaluation of the biocontrol potential of Mesocyclops thermocyclopoides (Copepoda: Cyclopidae) against mosquito larvae. Mittal PK; Dhiman RC; Adak T; Sharma VP Southeast Asian J Trop Med Public Health; 1997 Dec; 28(4):857-61. PubMed ID: 9656415 [TBL] [Abstract][Full Text] [Related]
39. Laboratory evaluation of Mesocyclops annulatus (Wierzejski, 1892) (Copepoda: Cyclopidea) as a predator of container-breeding mosquitoes in Argentina. Micieli MV; Marti G; García JJ Mem Inst Oswaldo Cruz; 2002 Sep; 97(6):835-8. PubMed ID: 12386705 [TBL] [Abstract][Full Text] [Related]
40. Efficacy of Aquatain Drago A; Simonato G; Vettore S; Martini S; Marcer F; di Regalbono AF; Cassini R J Am Mosq Control Assoc; 2020 Mar; 36(1):51-54. PubMed ID: 32497483 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]