BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25843215)

  • 1. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinylation Site Prediction Based on Protein Sequences Using the IFS-LightGBM (BO) Model.
    Zhang L; Liu M; Qin X; Liu G
    Comput Math Methods Med; 2020; 2020():8858489. PubMed ID: 33224267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning-based approaches for ubiquitination site prediction in human proteins.
    Pourmirzaei M; Ramazi S; Esmaili F; Shojaeilangari S; Allahvardi A
    BMC Bioinformatics; 2023 Nov; 24(1):449. PubMed ID: 38017391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features.
    Nilamyani AN; Auliah FN; Moni MA; Shoombuatong W; Hasan MM; Kurata H
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition.
    Xu Y; Ding J; Wu LY; Chou KC
    PLoS One; 2013; 8(2):e55844. PubMed ID: 23409062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PRMxAI: protein arginine methylation sites prediction based on amino acid spatial distribution using explainable artificial intelligence.
    Khandelwal M; Rout RK
    BMC Bioinformatics; 2023 Oct; 24(1):376. PubMed ID: 37794362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iTTCA-RF: a random forest predictor for tumor T cell antigens.
    Jiao S; Zou Q; Guo H; Shi L
    J Transl Med; 2021 Oct; 19(1):449. PubMed ID: 34706730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging permutation testing to assess confidence in positive-unlabeled learning applied to high-dimensional biological datasets.
    Xu S; Ackerman ME
    BMC Bioinformatics; 2024 Jun; 25(1):218. PubMed ID: 38898392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NTpred: a robust and precise machine learning framework for in silico identification of Tyrosine nitration sites in protein sequences.
    Datta S; Nabeel Asim M; Dengel A; Ahmed S
    Brief Funct Genomics; 2024 Mar; 23(2):163-179. PubMed ID: 37248673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RMTLysPTM: recognizing multiple types of lysine PTM sites by deep analysis on sequences.
    Chen L; Chen Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38066710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier.
    Liu X; Zhu B; Dai XW; Xu ZA; Li R; Qian Y; Lu YP; Zhang W; Liu Y; Zheng J
    BMC Genomics; 2023 Dec; 24(1):765. PubMed ID: 38082413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering functional roles of protein succinylation and glutarylation using genetic code expansion.
    Weyh M; Jokisch ML; Nguyen TA; Fottner M; Lang K
    Nat Chem; 2024 Jun; 16(6):913-921. PubMed ID: 38531969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm.
    Xue Y; Liu Z; Gao X; Jin C; Wen L; Yao X; Ren J
    PLoS One; 2010 Jun; 5(6):e11290. PubMed ID: 20585580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KbhbXG: A Machine learning architecture based on XGBoost for prediction of lysine β-Hydroxybutyrylation (Kbhb) modification sites.
    Chen L; Liu L; Su H; Xu Y
    Methods; 2024 Jul; 227():27-34. PubMed ID: 38679187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUMOhydro: a novel method for the prediction of sumoylation sites based on hydrophobic properties.
    Chen YZ; Chen Z; Gong YA; Ying G
    PLoS One; 2012; 7(6):e39195. PubMed ID: 22720073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of metal ion binding sites based on amino acid sequences.
    Cao X; Hu X; Zhang X; Gao S; Ding C; Feng Y; Bao W
    PLoS One; 2017; 12(8):e0183756. PubMed ID: 28854211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human pol II promoter prediction: time series descriptors and machine learning.
    Gangal R; Sharma P
    Nucleic Acids Res; 2005; 33(4):1332-6. PubMed ID: 15741185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.