These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 25843853)
21. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide. Meng N; Zhang SQ; Zhou NL; Shen J Nanotechnology; 2010 May; 21(18):185101. PubMed ID: 20378948 [TBL] [Abstract][Full Text] [Related]
22. Fabrication phosphomolybdic acid-reduced graphene oxide nanocomposite by UV photo-reduction and its electrochemical properties. Chen J; Liu S; Feng W; Zhang G; Yang F Phys Chem Chem Phys; 2013 Apr; 15(15):5664-9. PubMed ID: 23474670 [TBL] [Abstract][Full Text] [Related]
23. Assessment of morphology and property of graphene oxide-hydroxypropylmethylcellulose nanocomposite films. Ghosh TK; Gope S; Mondal D; Bhowmik B; Mollick MM; Maity D; Roy I; Sarkar G; Sadhukhan S; Rana D; Chakraborty M; Chattopadhyay D Int J Biol Macromol; 2014 May; 66():338-45. PubMed ID: 24608024 [TBL] [Abstract][Full Text] [Related]
24. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films. Zhu WK; Cong HP; Yao HB; Mao LB; Asiri AM; Alamry KA; Marwani HM; Yu SH Small; 2015 Sep; 11(34):4298-302. PubMed ID: 26097134 [TBL] [Abstract][Full Text] [Related]
25. Multiple-stimuli responsive bioelectrocatalysis based on reduced graphene oxide/poly(N-isopropylacrylamide) composite films and its application in the fabrication of logic gates. Wang L; Lian W; Yao H; Liu H ACS Appl Mater Interfaces; 2015 Mar; 7(9):5168-76. PubMed ID: 25686462 [TBL] [Abstract][Full Text] [Related]
26. Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan. Khan YH; Islam A; Sarwar A; Gull N; Khan SM; Munawar MA; Zia S; Sabir A; Shafiq M; Jamil T Carbohydr Polym; 2016 Aug; 146():131-8. PubMed ID: 27112859 [TBL] [Abstract][Full Text] [Related]
27. Fabrication of cellulose acetate nanocomposite membranes using 2D layered nanomaterials for macromolecular separation. Vetrivel S; Saraswathi MSA; Rana D; Nagendran A Int J Biol Macromol; 2018 Feb; 107(Pt B):1607-1612. PubMed ID: 28988843 [TBL] [Abstract][Full Text] [Related]
28. Enhancing long-term biodegradability and UV-shielding performances of transparent polylactic acid nanocomposite films by adding cellulose nanocrystal-zinc oxide hybrids. Wang YY; Yu HY; Yang L; Abdalkarim SYH; Chen WL Int J Biol Macromol; 2019 Dec; 141():893-905. PubMed ID: 31518619 [TBL] [Abstract][Full Text] [Related]
29. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications. Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403 [TBL] [Abstract][Full Text] [Related]
30. Thermal and electrical properties of starch-graphene oxide nanocomposites improved by photochemical treatment. Peregrino PP; Sales MJ; da Silva MF; Soler MA; da Silva LF; Moreira SG; Paterno LG Carbohydr Polym; 2014 Jun; 106():305-11. PubMed ID: 24721083 [TBL] [Abstract][Full Text] [Related]
31. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Su PG; Peng SL Talanta; 2015 Jan; 132():398-405. PubMed ID: 25476324 [TBL] [Abstract][Full Text] [Related]
33. Effect of hydroxypropyl cellulose (HPC), polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) on Nd-TiO Samadi S; Mirseyfifard SMH; Assari M; Hassannejad M Water Sci Technol; 2017 Jul; 76(1-2):15-27. PubMed ID: 28708606 [TBL] [Abstract][Full Text] [Related]
34. Highly Transparent, Strong, and Flexible Films with Modified Cellulose Nanofiber Bearing UV Shielding Property. Niu X; Liu Y; Fang G; Huang C; Rojas OJ; Pan H Biomacromolecules; 2018 Dec; 19(12):4565-4575. PubMed ID: 30412387 [TBL] [Abstract][Full Text] [Related]
35. Surface modification of graphene oxide with stimuli-responsive polymer brush containing β-cyclodextrin as a pendant group: Preparation, characterization, and evaluation as controlled drug delivery agent. Pooresmaeil M; Namazi H Colloids Surf B Biointerfaces; 2018 Dec; 172():17-25. PubMed ID: 30121487 [TBL] [Abstract][Full Text] [Related]
37. Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Guo H; Peng M; Zhu Z; Sun L Nanoscale; 2013 Oct; 5(19):9040-8. PubMed ID: 23934578 [TBL] [Abstract][Full Text] [Related]
38. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging. Rodríguez FJ; Torres A; Peñaloza Á; Sepúlveda H; Galotto MJ; Guarda A; Bruna J Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(3):342-53. PubMed ID: 24345085 [TBL] [Abstract][Full Text] [Related]
39. Preparation and characterization of starch-based nanocomposites reinforced by graphene oxide self-assembled on the surface of silanecouplingagent modified cellulose nanocrystals. Zhang K; Zhou M; Cheng F; Lin Y; Zhu P; Li J; Tang K Int J Biol Macromol; 2022 Feb; 198():187-193. PubMed ID: 34973977 [TBL] [Abstract][Full Text] [Related]
40. One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Si H; Luo H; Xiong G; Yang Z; Raman SR; Guo R; Wan Y Macromol Rapid Commun; 2014 Oct; 35(19):1706-11. PubMed ID: 25180660 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]