These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25843915)

  • 41. A comparative analysis of the post-cranial skeleton of fossorial and non-fossorial gymnophthalmid lizards.
    Roscito JG; Rodrigues MT
    J Morphol; 2013 Aug; 274(8):845-58. PubMed ID: 23508362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensionally preserved integument reveals hydrodynamic adaptations in the extinct marine lizard Ectenosaurus (Reptilia, Mosasauridae).
    Lindgren J; Everhart MJ; Caldwell MW
    PLoS One; 2011; 6(11):e27343. PubMed ID: 22110629
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Locomotor analysis of surface propulsion by three species of reduced-limbed fossorial lizards (Lerista: Scincidae) from western australia.
    Gans C; Fusari M
    J Morphol; 1994 Dec; 222(3):309-326. PubMed ID: 29865419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bio-inspired scale-like surface textures and their tribological properties.
    Greiner C; Schäfer M
    Bioinspir Biomim; 2015 Jun; 10(4):044001. PubMed ID: 26125522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanics and optimization of undulatory locomotion in different environments, tuning geometry, stiffness, damping and frictional anisotropy.
    Yaqoob B; Rodella A; Del Dottore E; Mondini A; Mazzolai B; Pugno NM
    J R Soc Interface; 2023 Feb; 20(199):20220875. PubMed ID: 36751930
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of internal damping on locomotion in frictional environments.
    Van Stratum B; Clark J; Shoele K
    Phys Rev E; 2023 May; 107(5-1):054406. PubMed ID: 37329083
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A fossil Diploglossus (Squamata, Anguidae) lizard from Basse-Terre and Grande-Terre Islands (Guadeloupe, French West Indies).
    Bochaton C; Boistel R; Casagrande F; Grouard S; Bailon S
    Sci Rep; 2016 Jun; 6():28475. PubMed ID: 27354326
    [TBL] [Abstract][Full Text] [Related]  

  • 48. What Defines Different Modes of Snake Locomotion?
    Jayne BC
    Integr Comp Biol; 2020 Jul; 60(1):156-170. PubMed ID: 32271916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From lizard body form to serpentiform morphology: The atlas-axis complex in African cordyliformes and their relatives.
    Čerňanský A
    J Morphol; 2016 Apr; 277(4):512-36. PubMed ID: 26873004
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Geometric phase predicts locomotion performance in undulating living systems across scales.
    Rieser JM; Chong B; Gong C; Astley HC; Schiebel PE; Diaz K; Pierce CJ; Lu H; Hatton RL; Choset H; Goldman DI
    Proc Natl Acad Sci U S A; 2024 Jun; 121(24):e2320517121. PubMed ID: 38848301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hidden limbs in the "limbless skink" Brachymeles lukbani: Developmental observations.
    Smith-Paredes D; Griffith O; Fabbri M; Yohe L; Blackburn DG; Siler CD; Bhullar BS; Wagner GP
    J Anat; 2021 Sep; 239(3):693-703. PubMed ID: 33870497
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of perch diameter and incline on the kinematics, performance and modes of arboreal locomotion of corn snakes (Elaphe guttata).
    Astley HC; Jayne BC
    J Exp Biol; 2007 Nov; 210(Pt 21):3862-72. PubMed ID: 17951427
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Homology of the jaw muscles in lizards and snakes-a solution from a comparative gnathostome approach.
    Johnston P
    Anat Rec (Hoboken); 2014 Mar; 297(3):574-85. PubMed ID: 24482354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scratch resistance of the ventral skin surface in four snake species (Squamata, Serpentes).
    Klein MG; Gorb SN
    Zoology (Jena); 2016 Apr; 119(2):81-96. PubMed ID: 26874374
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evolution of fossorial locomotion in the transition from tetrapod to snake-like in lizards.
    Morinaga G; Bergmann PJ
    Proc Biol Sci; 2020 Mar; 287(1923):20200192. PubMed ID: 32183623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adhesive and frictional properties of tarsal attachment pads in two species of stick insects (Phasmatodea) with smooth and nubby euplantulae.
    Busshardt P; Wolf H; Gorb SN
    Zoology (Jena); 2012 Jun; 115(3):135-41. PubMed ID: 22578997
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of two- and three-link snakelike locomotion.
    Jing F; Alben S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022711. PubMed ID: 23496552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The energetic cost of limbless locomotion.
    Walton M; Jayne BC; Bennet AF
    Science; 1990 Aug; 249(4968):524-7. PubMed ID: 17735283
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Body location and tail regeneration effects on osteoderms morphology-are they useful tools for systematic, paleontology, and skeletochronology in diploglossine lizards (squamata, anguidae)?
    Bochaton C; De Buffrenil V; Lemoine M; Bailon S; Ineich I
    J Morphol; 2015 Nov; 276(11):1333-44. PubMed ID: 26267236
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes.
    Kano T; Ishiguro A
    Integr Comp Biol; 2020 Jul; 60(1):232-247. PubMed ID: 32215573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.