These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25844049)

  • 1. Product ion distributions for the reactions of NO
    Mochalski P; Unterkofler K; Španěl P; Smith D; Amann A
    Int J Mass Spectrom; 2014 Apr; 363():23-31. PubMed ID: 25844049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Product ion distributions for the reactions of NO(+) with some physiologically significant volatile organosulfur and organoselenium compounds obtained using a selective reagent ionization time-of-flight mass spectrometer.
    Mochalski P; Unterkofler K; Španěl P; Smith D; Amann A
    Rapid Commun Mass Spectrom; 2014 Aug; 28(15):1683-90. PubMed ID: 24975248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O(+) and NO(+) with a series of volatile aldehydes of biogenic significance.
    Smith D; Chippendale TW; Španěl P
    Rapid Commun Mass Spectrom; 2014 Sep; 28(17):1917-28. PubMed ID: 25088135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selected ion flow tube study of the reactions of H
    Španěl P; Žabka J; Zymak I; Smith D
    Rapid Commun Mass Spectrom; 2017 Mar; 31(5):437-446. PubMed ID: 27983765
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Canaval E; Hyttinen N; Schmidbauer B; Fischer L; Hansel A
    Front Chem; 2019; 7():191. PubMed ID: 31001517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting Hexafluoroisopropanol Using Soft Chemical Ionization Mass Spectrometry and Analytical Applications to Exhaled Breath.
    Weiss F; Chawaguta A; Tolpeit M; Volk V; Schiller A; Ruzsanyi V; Hillinger P; Lederer W; Märk TD; Mayhew CA
    J Am Soc Mass Spectrom; 2023 May; 34(5):958-968. PubMed ID: 36995741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct analysis of aldehydes and carboxylic acids in the gas phase by negative ionization selected ion flow tube mass spectrometry: Quantification and modelling of ion-molecule reactions.
    Ghislain M; Costarramone N; Sotiropoulos JM; Pigot T; Van Den Berg R; Lacombe S; Le Bechec M
    Rapid Commun Mass Spectrom; 2019 Nov; 33(21):1623-1634. PubMed ID: 31216077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Non-Invasive Monitoring of Short-Chain Fatty Acids in Exhaled Breath.
    Meurs J; Sakkoula E; Cristescu SM
    Front Chem; 2022; 10():853541. PubMed ID: 35844640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of modular ion-funnel technology onto analysis of breath VOCs by means of real-time mass spectrometry.
    Pugliese G; Piel F; Trefz P; Sulzer P; Schubert JK; Miekisch W
    Anal Bioanal Chem; 2020 Oct; 412(26):7131-7140. PubMed ID: 32794005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and quantification of VOCs by proton transfer reaction time of flight mass spectrometry: An experimental workflow for the optimization of specificity, sensitivity, and accuracy.
    Romano A; Hanna GB
    J Mass Spectrom; 2018 Apr; 53(4):287-295. PubMed ID: 29336521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-tube collision-induced dissociation for selected ion flow-drift tube mass spectrometry, SIFDT-MS: a case study of NO(+) reactions with isomeric monoterpenes.
    Spesyvyi A; Sovová K; Španěl P
    Rapid Commun Mass Spectrom; 2016 Sep; 30(18):2009-16. PubMed ID: 27459885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compendium of the Reactions of H
    Malásková M; Olivenza-León D; Piel F; Mochalski P; Sulzer P; Jürschik S; Mayhew CA; Märk TD
    Front Chem; 2019; 7():401. PubMed ID: 31263690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic Switching and Selection of H
    Španěl P; Spesyvyi A; Smith D
    Anal Chem; 2019 Apr; 91(8):5380-5388. PubMed ID: 30869870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of reactions of NH
    Swift SJ; Smith D; Dryahina K; Gnioua MO; Španěl P
    Rapid Commun Mass Spectrom; 2022 Aug; 36(15):e9328. PubMed ID: 35603529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.
    Pang X
    J Environ Sci (China); 2015 Jun; 32():196-206. PubMed ID: 26040746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of alpha,beta-unsaturated aldehydes by GC/MS is dependent upon ionization method.
    Long EK; Smoliakova I; Honzatko A; Picklo MJ
    Lipids; 2008 Aug; 43(8):765-74. PubMed ID: 18592287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Reagent Ion Mass Spectrometric Investigations of the Nitroanilines.
    Olivenza-León D; Mayhew CA; González-Méndez R
    J Am Soc Mass Spectrom; 2019 Nov; 30(11):2259-2266. PubMed ID: 31502221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-derived aldehyde degradation under thermal conditions.
    Zamora R; Navarro JL; Aguilar I; Hidalgo FJ
    Food Chem; 2015 May; 174():89-96. PubMed ID: 25529656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring of selected skin-borne volatile markers of entrapped humans by selective reagent ionization time of flight mass spectrometry in NO+ mode.
    Mochalski P; Unterkofler K; Hinterhuber H; Amann A
    Anal Chem; 2014 Apr; 86(8):3915-23. PubMed ID: 24611620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of the fragmentation of neutral lactooligosaccharides in negative-ion mode by UV-MALDI-TOF and UV-MALDI ion-trap/TOF mass spectrometry.
    Yamagaki T; Suzuki H; Tachibana K
    J Am Soc Mass Spectrom; 2006 Jan; 17(1):67-74. PubMed ID: 16352446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.