These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 25844177)
1. Functionalized scaffolds to enhance tissue regeneration. Guo B; Lei B; Li P; Ma PX Regen Biomater; 2015 Mar; 2(1):47-57. PubMed ID: 25844177 [TBL] [Abstract][Full Text] [Related]
2. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780 [TBL] [Abstract][Full Text] [Related]
3. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. Allo BA; Costa DO; Dixon SJ; Mequanint K; Rizkalla AS J Funct Biomater; 2012 Jun; 3(2):432-63. PubMed ID: 24955542 [TBL] [Abstract][Full Text] [Related]
4. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964 [TBL] [Abstract][Full Text] [Related]
5. Silk scaffolds in bone tissue engineering: An overview. Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652 [TBL] [Abstract][Full Text] [Related]
6. Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration. Sofi HS; Ashraf R; Beigh MA; Sheikh FA Adv Exp Med Biol; 2018; 1078():49-78. PubMed ID: 30357618 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055 [TBL] [Abstract][Full Text] [Related]
8. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues. Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143 [TBL] [Abstract][Full Text] [Related]
9. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588 [TBL] [Abstract][Full Text] [Related]
10. Development of hybrid scaffolds with biodegradable polymer composites and bioactive hydrogels for bone tissue engineering. Chen YT; Chuang YH; Chen CM; Wang JY; Wang J Biomater Adv; 2023 Oct; 153():213562. PubMed ID: 37549480 [TBL] [Abstract][Full Text] [Related]
11. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. Nazarnezhad S; Baino F; Kim HW; Webster TJ; Kargozar S Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32824491 [TBL] [Abstract][Full Text] [Related]
12. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. Chahal S; Kumar A; Hussian FSJ J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982 [TBL] [Abstract][Full Text] [Related]
13. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Anjum S; Rahman F; Pandey P; Arya DK; Alam M; Rajinikanth PS; Ao Q Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012473 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic Nanofibrous 3D Materials for Craniofacial Bone Tissue Engineering. Miszuk JM; Hu J; Sun H ACS Appl Bio Mater; 2020 Oct; 3(10):6538-6545. PubMed ID: 33163910 [TBL] [Abstract][Full Text] [Related]
15. Bone Healing Materials in the Treatment of Recalcitrant Nonunions and Bone Defects. Rodríguez-Merchán EC Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328773 [TBL] [Abstract][Full Text] [Related]
16. 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration. Elakkiya K; Bargavi P; Balakumar S J Mech Behav Biomed Mater; 2023 Nov; 147():106106. PubMed ID: 37708780 [TBL] [Abstract][Full Text] [Related]
17. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. Chen J; Yu M; Guo B; Ma PX; Yin Z J Colloid Interface Sci; 2018 Mar; 514():517-527. PubMed ID: 29289734 [TBL] [Abstract][Full Text] [Related]
18. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Zeimaran E; Pourshahrestani S; Fathi A; Razak NABA; Kadri NA; Sheikhi A; Baino F Acta Biomater; 2021 Dec; 136():1-36. PubMed ID: 34562661 [TBL] [Abstract][Full Text] [Related]
19. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Bharadwaz A; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012 [TBL] [Abstract][Full Text] [Related]
20. Advocating Electrically Conductive Scaffolds with Low Immunogenicity for Biomedical Applications: A Review. Ahmad Ruzaidi DA; Mahat MM; Shafiee SA; Mohamed Sofian Z; Mohmad Sabere AS; Ramli R; Osman H; Hamzah HH; Zainal Ariffin Z; Sadasivuni KK Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]