BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 25844177)

  • 1. Functionalized scaffolds to enhance tissue regeneration.
    Guo B; Lei B; Li P; Ma PX
    Regen Biomater; 2015 Mar; 2(1):47-57. PubMed ID: 25844177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications.
    Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration.
    Allo BA; Costa DO; Dixon SJ; Mequanint K; Rizkalla AS
    J Funct Biomater; 2012 Jun; 3(2):432-63. PubMed ID: 24955542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
    El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR
    Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration.
    Sofi HS; Ashraf R; Beigh MA; Sheikh FA
    Adv Exp Med Biol; 2018; 1078():49-78. PubMed ID: 30357618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A
    J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of hybrid scaffolds with biodegradable polymer composites and bioactive hydrogels for bone tissue engineering.
    Chen YT; Chuang YH; Chen CM; Wang JY; Wang J
    Biomater Adv; 2023 Oct; 153():213562. PubMed ID: 37549480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications.
    Nazarnezhad S; Baino F; Kim HW; Webster TJ; Kargozar S
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32824491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine.
    Anjum S; Rahman F; Pandey P; Arya DK; Alam M; Rajinikanth PS; Ao Q
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic Nanofibrous 3D Materials for Craniofacial Bone Tissue Engineering.
    Miszuk JM; Hu J; Sun H
    ACS Appl Bio Mater; 2020 Oct; 3(10):6538-6545. PubMed ID: 33163910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone Healing Materials in the Treatment of Recalcitrant Nonunions and Bone Defects.
    Rodríguez-Merchán EC
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration.
    Elakkiya K; Bargavi P; Balakumar S
    J Mech Behav Biomed Mater; 2023 Nov; 147():106106. PubMed ID: 37708780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration.
    Chen J; Yu M; Guo B; Ma PX; Yin Z
    J Colloid Interface Sci; 2018 Mar; 514():517-527. PubMed ID: 29289734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration.
    Zeimaran E; Pourshahrestani S; Fathi A; Razak NABA; Kadri NA; Sheikhi A; Baino F
    Acta Biomater; 2021 Dec; 136():1-36. PubMed ID: 34562661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advocating Electrically Conductive Scaffolds with Low Immunogenicity for Biomedical Applications: A Review.
    Ahmad Ruzaidi DA; Mahat MM; Shafiee SA; Mohamed Sofian Z; Mohmad Sabere AS; Ramli R; Osman H; Hamzah HH; Zainal Ariffin Z; Sadasivuni KK
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.