These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves. Ripepe M; Barfucci G; De Angelis S; Delle Donne D; Lacanna G; Marchetti E Sci Rep; 2016 Nov; 6():36727. PubMed ID: 27830768 [TBL] [Abstract][Full Text] [Related]
7. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
8. Validation of a continuous flow method for the determination of soluble iron in atmospheric dust and volcanic ash. Simonella LE; Gaiero DM; Palomeque ME Talanta; 2014 Oct; 128():248-53. PubMed ID: 25059156 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of physical health effects due to volcanic hazards: the use of experimental systems to estimate the pulmonary toxicity of volcanic ash. Martin TR; Wehner AP; Butler J Am J Public Health; 1986 Mar; 76(3 Suppl):59-65. PubMed ID: 3080911 [TBL] [Abstract][Full Text] [Related]
10. Investigating Volcanic Plumes from Mt. Etna Eruptions of December 2015 by Means of AVHRR and SEVIRI Data. Marchese F; Falconieri A; Filizzola C; Pergola N; Tramutoli V Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866566 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Volcanic Cloud Components Using Machine Learning Techniques and SEVIRI Infrared Images. Torrisi F; Amato E; Corradino C; Mangiagli S; Del Negro C Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298065 [TBL] [Abstract][Full Text] [Related]
12. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Ermolin MS; Fedotov PS; Malik NA; Karandashev VK Chemosphere; 2018 Jun; 200():16-22. PubMed ID: 29471164 [TBL] [Abstract][Full Text] [Related]
13. Risk, interest groups and the definition of crisis: the case of volcanic ash. Hutter BM; Lloyd-Bostock S Br J Sociol; 2013 Sep; 64(3):383-404. PubMed ID: 23998317 [TBL] [Abstract][Full Text] [Related]
14. Assessment of the exposure of islanders to ash from the Soufriere Hills volcano, Montserrat, British West Indies. Searl A; Nicholl A; Baxter PJ Occup Environ Med; 2002 Aug; 59(8):523-31. PubMed ID: 12151608 [TBL] [Abstract][Full Text] [Related]
15. The in vitro respiratory toxicity of cristobalite-bearing volcanic ash. Damby DE; Murphy FA; Horwell CJ; Raftis J; Donaldson K Environ Res; 2016 Feb; 145():74-84. PubMed ID: 26630620 [TBL] [Abstract][Full Text] [Related]
16. Immediate public health concerns and actions in volcanic eruptions: lessons from the Mount St. Helens eruptions, May 18-October 18, 1980. Bernstein RS; Baxter PJ; Falk H; Ing R; Foster L; Frost F Am J Public Health; 1986 Mar; 76(3 Suppl):25-37. PubMed ID: 3946727 [TBL] [Abstract][Full Text] [Related]
17. Assessment of eruption source parameters using infrasound and plume modelling: a case study from the 2021 eruption of Mt. Etna, Italy. De Angelis S; Zuccarello L; Scollo S; Mereu L Sci Rep; 2023 Nov; 13(1):19857. PubMed ID: 37963914 [TBL] [Abstract][Full Text] [Related]
18. Distinguishing remobilized ash from erupted volcanic plumes using space-borne multi-angle imaging. Flower VJB; Kahn RA Geophys Res Lett; 2017 Oct; 44(20):10772-10779. PubMed ID: 29568141 [TBL] [Abstract][Full Text] [Related]
19. Experimental simulations of volcanic ash resuspension by wind under the effects of atmospheric humidity. Del Bello E; Taddeucci J; Merrison JP; Alois S; Iversen JJ; Scarlato P Sci Rep; 2018 Sep; 8(1):14509. PubMed ID: 30266973 [TBL] [Abstract][Full Text] [Related]
20. Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Gouhier M; Eychenne J; Azzaoui N; Guillin A; Deslandes M; Poret M; Costa A; Husson P Sci Rep; 2019 Feb; 9(1):1449. PubMed ID: 30723244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]