These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25844403)

  • 1. Multi-Dimensional Scaling and MODELLER-Based Evolutionary Algorithms for Protein Model Refinement.
    Chen Y; Shang Y; Xu D
    Proc Congr Evol Comput; 2014 Jul; 2014():1038-1045. PubMed ID: 25844403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistent refinement of submitted models at CASP using a knowledge-based potential.
    Chopra G; Kalisman N; Levitt M
    Proteins; 2010 Sep; 78(12):2668-78. PubMed ID: 20589633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. i3Drefine software for protein 3D structure refinement and its assessment in CASP10.
    Bhattacharya D; Cheng J
    PLoS One; 2013; 8(7):e69648. PubMed ID: 23894517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information.
    Benkert P; Schwede T; Tosatto SC
    BMC Struct Biol; 2009 May; 9():35. PubMed ID: 19457232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making Use of Averaging Methods in MODELLER for Protein Structure Prediction.
    Rosignoli S; Lustrino E; Di Silverio I; Paiardini A
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38339009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Princeton_TIGRESS: protein geometry refinement using simulations and support vector machines.
    Khoury GA; Tamamis P; Pinnaduwage N; Smadbeck J; Kieslich CA; Floudas CA
    Proteins; 2014 May; 82(5):794-814. PubMed ID: 24174311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization.
    Bhattacharya D; Cheng J
    Proteins; 2013 Jan; 81(1):119-31. PubMed ID: 22927229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated pipeline integrating AlphaFold 2 and MODELLER for protein structure prediction.
    Gil Zuluaga FH; D'Arminio N; Bardozzo F; Tagliaferri R; Marabotti A
    Comput Struct Biotechnol J; 2023; 21():5620-5629. PubMed ID: 38047234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Uncertainties in the Global Distance Test (GDT_TS) for CASP Models.
    Li W; Schaeffer RD; Otwinowski Z; Grishin NV
    PLoS One; 2016; 11(5):e0154786. PubMed ID: 27149620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Structure Refinement Using Multi-Objective Particle Swarm Optimization with Decomposition Strategy.
    Zhou CP; Wang D; Pan X; Shen HB
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; BaĆ¹ D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving protein structure prediction with extended sequence similarity searches and deep-learning-based refinement in CASP15.
    Oda T
    Proteins; 2023 Dec; 91(12):1712-1723. PubMed ID: 37485822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Princeton_TIGRESS 2.0: High refinement consistency and net gains through support vector machines and molecular dynamics in double-blind predictions during the CASP11 experiment.
    Khoury GA; Smadbeck J; Kieslich CA; Koskosidis AJ; Guzman YA; Tamamis P; Floudas CA
    Proteins; 2017 Jun; 85(6):1078-1098. PubMed ID: 28241391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the "satisfaction of spatial restraints" approach of MODELLER for protein homology modeling.
    Janson G; Grottesi A; Pietrosanto M; Ausiello G; Guarguaglini G; Paiardini A
    PLoS Comput Biol; 2019 Dec; 15(12):e1007219. PubMed ID: 31846452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NEW MDS AND CLUSTERING BASED ALGORITHMS FOR PROTEIN MODEL QUALITY ASSESSMENT AND SELECTION.
    Wang Q; Shang C; Xu D; Shang Y
    Int J Artif Intell Tools; 2013 Oct; 22(5):1360006. PubMed ID: 24808625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SELECTpro: effective protein model selection using a structure-based energy function resistant to BLUNDERs.
    Randall A; Baldi P
    BMC Struct Biol; 2008 Dec; 8():52. PubMed ID: 19055744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective refinement and selection of near-native models in protein structure prediction.
    Zhang J; Barz B; Zhang J; Xu D; Kosztin I
    Proteins; 2015 Oct; 83(10):1823-35. PubMed ID: 26214389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial intelligence-based multi-objective optimization protocol for protein structure refinement.
    Wang D; Geng L; Zhao YJ; Yang Y; Huang Y; Zhang Y; Shen HB
    Bioinformatics; 2020 Jan; 36(2):437-448. PubMed ID: 31274151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of template-based modeling of protein structure in CASP11.
    Modi V; Xu Q; Adhikari S; Dunbrack RL
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):200-20. PubMed ID: 27081927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein structure modeling and refinement by global optimization in CASP12.
    Hong SH; Joung I; Flores-Canales JC; Manavalan B; Cheng Q; Heo S; Kim JY; Lee SY; Nam M; Joo K; Lee IH; Lee SJ; Lee J
    Proteins; 2018 Mar; 86 Suppl 1():122-135. PubMed ID: 29159837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.