These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25844522)

  • 1. Ultrafast imaging of surface plasmons propagating on a gold surface.
    Gong Y; Joly AG; Hu D; El-Khoury PZ; Hess WP
    Nano Lett; 2015 May; 15(5):3472-8. PubMed ID: 25844522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interferometric Plasmonic Lensing with Nanohole Arrays.
    Gong Y; Joly AG; El-Khoury PZ; Hess WP
    J Phys Chem Lett; 2014 Dec; 5(24):4243-8. PubMed ID: 26273969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-Directed Surface Plasmon Polariton Launching.
    Gong Y; Joly AG; El-Khoury PZ; Hess WP
    J Phys Chem Lett; 2017 Jan; 8(1):49-54. PubMed ID: 27936754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Plasmon Coupling and Control Using Spherical Cap Structures.
    Gong Y; Joly AG; Zhang X; El-Khoury PZ; Hess WP
    J Phys Chem Lett; 2017 Jun; 8(12):2695-2699. PubMed ID: 28562047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Microscopy of Spin-Momentum-Locked Surface Plasmon Polaritons.
    Dai Y; Dąbrowski M; Apkarian VA; Petek H
    ACS Nano; 2018 Jul; 12(7):6588-6596. PubMed ID: 29883101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors.
    Fukumoto K; Onda K; Yamada Y; Matsuki T; Mukuta T; Tanaka S; Koshihara SY
    Rev Sci Instrum; 2014 Aug; 85(8):083705. PubMed ID: 25173274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping surface plasmon polariton propagation via counter-propagating light pulses.
    Lemke C; Leißner T; Jauernik S; Klick A; Fiutowski J; Kjelstrup-Hansen J; Rubahn HG; Bauer M
    Opt Express; 2012 Jun; 20(12):12877-84. PubMed ID: 22714314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct spatiotemporal imaging of femtosecond surface plasmon polaritons assisted with the opening of the two-color quantum pathway effect.
    Zhao Z; Lang P; Qin Y; Ji B; Song X; Lin J
    Opt Express; 2020 Jun; 28(13):19023-19033. PubMed ID: 32672188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the Nonlinear Plasmoemission Dynamics of Electrons from Strong Plasmonic Fields.
    Podbiel D; Kahl P; Makris A; Frank B; Sindermann S; Davis TJ; Giessen H; Hoegen MH; Meyer Zu Heringdorf FJ
    Nano Lett; 2017 Nov; 17(11):6569-6574. PubMed ID: 28945435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy and Momentum Distribution of Surface Plasmon-Induced Hot Carriers Isolated
    Hartelt M; Terekhin PN; Eul T; Mahro AK; Frisch B; Prinz E; Rethfeld B; Stadtmüller B; Aeschlimann M
    ACS Nano; 2021 Dec; 15(12):19559-19569. PubMed ID: 34852458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna.
    Mårsell E; Losquin A; Svärd R; Miranda M; Guo C; Harth A; Lorek E; Mauritsson J; Arnold CL; Xu H; L'Huillier A; Mikkelsen A
    Nano Lett; 2015 Oct; 15(10):6601-8. PubMed ID: 26375959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling Spatially Heterogeneous Ultrafast Carrier Dynamics of Single-Layer WSe
    Wang L; Xu C; Li MY; Li LJ; Loh ZH
    Nano Lett; 2018 Aug; 18(8):5172-5178. PubMed ID: 29969565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond time-resolved photoemission electron microscopy operated at sample illumination from the rear side.
    Klick A; Großmann M; Beewen M; Bittorf P; Fiutowski J; Leißner T; Rubahn HG; Reinhardt C; Elmers HJ; Bauer M
    Rev Sci Instrum; 2019 May; 90(5):053704. PubMed ID: 31153234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation and Manipulation of Visible Edge Plasmons in Bi
    Lu X; Hao Q; Cen M; Zhang G; Sun J; Mao L; Cao T; Zhou C; Jiang P; Yang X; Bao X
    Nano Lett; 2018 May; 18(5):2879-2884. PubMed ID: 29595988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time.
    Da Browski M; Dai Y; Petek H
    Chem Rev; 2020 Jul; 120(13):6247-6287. PubMed ID: 32530607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-induced optical field enhancement studied by correlated scanning and photoemission electron microscopy.
    Peppernick SJ; Joly AG; Beck KM; Hess WP
    J Chem Phys; 2013 Apr; 138(15):154701. PubMed ID: 23614430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-field focused photoemission from polystyrene microspheres studied with photoemission electron microscopy.
    Peppernick SJ; Joly AG; Beck KM; Hess WP
    J Chem Phys; 2012 Jul; 137(1):014202. PubMed ID: 22779641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging XPS and photoemission electron microscopy; surface chemical mapping and blood cell visualization.
    Skallberg A; Brommesson C; Uvdal K
    Biointerphases; 2017 May; 12(2):02C408. PubMed ID: 28464614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normal-Incidence PEEM Imaging of Propagating Modes in a Plasmonic Nanocircuit.
    Razinskas G; Kilbane D; Melchior P; Geisler P; Krauss E; Mathias S; Hecht B; Aeschlimann M
    Nano Lett; 2016 Nov; 16(11):6832-6837. PubMed ID: 27723356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy.
    Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.