BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25844670)

  • 1. Disease gene prioritization using network and feature.
    Xie B; Agam G; Balasubramanian S; Xu J; Gilliam TC; Maltsev N; Börnigen D
    J Comput Biol; 2015 Apr; 22(4):313-23. PubMed ID: 25844670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candidate gene prioritization with Endeavour.
    Tranchevent LC; Ardeshirdavani A; ElShal S; Alcaide D; Aerts J; Auboeuf D; Moreau Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W117-21. PubMed ID: 27131783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian framework to integrate multi-level genome-scale data for Autism risk gene prioritization.
    Ji Y; Chen R; Wang Q; Wei Q; Tao R; Li B
    BMC Bioinformatics; 2022 Apr; 23(1):146. PubMed ID: 35459094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Guilt by association" is not competitive with genetic association for identifying autism risk genes.
    Gunning M; Pavlidis P
    Sci Rep; 2021 Aug; 11(1):15950. PubMed ID: 34354131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PANDA: Prioritization of autism-genes using network-based deep-learning approach.
    Zhang Y; Chen Y; Hu T
    Genet Epidemiol; 2020 Jun; 44(4):382-394. PubMed ID: 32039500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ensemble rank learning approach for gene prioritization.
    Lee PF; Soo VW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3507-10. PubMed ID: 24110485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidate gene prioritization.
    Masoudi-Nejad A; Meshkin A; Haji-Eghrari B; Bidkhori G
    Mol Genet Genomics; 2012 Sep; 287(9):679-98. PubMed ID: 22893106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning.
    Azadifar S; Ahmadi A
    BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved method for prioritization of disease associated lncRNAs based on ceRNA theory and functional genomics data.
    Wang P; Guo Q; Gao Y; Zhi H; Zhang Y; Liu Y; Zhang J; Yue M; Guo M; Ning S; Zhang G; Li X
    Oncotarget; 2017 Jan; 8(3):4642-4655. PubMed ID: 27992375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network- and attribute-based classifiers can prioritize genes and pathways for autism spectrum disorders and intellectual disability.
    Kou Y; Betancur C; Xu H; Buxbaum JD; Ma'ayan A
    Am J Med Genet C Semin Med Genet; 2012 May; 160C(2):130-42. PubMed ID: 22499558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene functional networks and autism spectrum characteristics in young people with intellectual disability: a dimensional phenotyping study.
    Brkić D; Ng-Cordell E; O'Brien S; Scerif G; Astle D; Baker K
    Mol Autism; 2020 Dec; 11(1):98. PubMed ID: 33308299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific phenotype semantics facilitate gene prioritization in clinical exome sequencing.
    Tomar S; Sethi R; Lai PS
    Eur J Hum Genet; 2019 Sep; 27(9):1389-1397. PubMed ID: 31053788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.
    Valentini G; Paccanaro A; Caniza H; Romero AE; Re M
    Artif Intell Med; 2014 Jun; 61(2):63-78. PubMed ID: 24726035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway-Dependent Effectiveness of Network Algorithms for Gene Prioritization.
    Shim JE; Hwang S; Lee I
    PLoS One; 2015; 10(6):e0130589. PubMed ID: 26091506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene2DisCo: Gene to disease using disease commonalities.
    Frasca M
    Artif Intell Med; 2017 Oct; 82():34-46. PubMed ID: 28882544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coalitional game theory as a promising approach to identify candidate autism genes.
    Gupta A; Sun MW; Paskov KM; Stockham NT; Jung JY; Wall DP
    Pac Symp Biocomput; 2018; 23():436-447. PubMed ID: 29218903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemically identifying and prioritizing risk lncRNAs through integration of pan-cancer phenotype associations.
    Xu C; Qi R; Ping Y; Li J; Zhao H; Wang L; Du MY; Xiao Y; Li X
    Oncotarget; 2017 Feb; 8(7):12041-12051. PubMed ID: 28076842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.