BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 25844931)

  • 1. High-Yield and Selective Photoelectrocatalytic Reduction of CO2 to Formate by Metallic Copper Decorated Co3O4 Nanotube Arrays.
    Shen Q; Chen Z; Huang X; Liu M; Zhao G
    Environ Sci Technol; 2015 May; 49(9):5828-35. PubMed ID: 25844931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Design of Sulfur-Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate.
    Huang Y; Deng Y; Handoko AD; Goh GKL; Yeo BS
    ChemSusChem; 2018 Jan; 11(1):320-326. PubMed ID: 28881436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal (Mn, Co, and Cu) oxide nanocrystals from simple formate precursors.
    Sun X; Zhang YW; Si R; Yan CH
    Small; 2005 Nov; 1(11):1081-6. PubMed ID: 17193400
    [No Abstract]   [Full Text] [Related]  

  • 4. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.
    Cheng J; Zhang M; Wu G; Wang X; Zhou J; Cen K
    Environ Sci Technol; 2014 Jun; 48(12):7076-84. PubMed ID: 24846604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Stability and CO/Formate Selectivity of Plasma-Treated SnO
    Choi YW; Scholten F; Sinev I; Roldan Cuenya B
    J Am Chem Soc; 2019 Apr; 141(13):5261-5266. PubMed ID: 30827111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires.
    Ma M; Djanashvili K; Smith WA
    Phys Chem Chem Phys; 2015 Aug; 17(32):20861-7. PubMed ID: 26214799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Reduction of CO
    Ávila-Bolívar B; García-Cruz L; Montiel V; Solla-Gullón J
    Molecules; 2019 May; 24(11):. PubMed ID: 31141906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of copper-doped cobalt oxide electrodes.
    Rosa-Toro AL; Berenguer R; Quijada C; Montilla F; Morallón E; Vazquez JL
    J Phys Chem B; 2006 Nov; 110(47):24021-9. PubMed ID: 17125373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ratiometric photoelectrochemical immunosensor based on g-C
    Wu Q; Zhang F; Li H; Li Z; Kang Q; Shen D
    Analyst; 2018 Oct; 143(20):5030-5037. PubMed ID: 30230479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper/Carbon Heterogenous Interfaces for Enhanced Selective Electrocatalytic Reduction of CO
    Du J; Xin Y; Dong M; Yang J; Xu Q; Liu H; Han B
    Small; 2021 Oct; 17(41):e2102629. PubMed ID: 34510751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries.
    Du G; Liu X; Zong Y; Hor TS; Yu A; Liu Z
    Nanoscale; 2013 Jun; 5(11):4657-61. PubMed ID: 23608821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Dependent Activity of Palladium Nanoparticles: Efficient Conversion of CO
    Rahaman M; Dutta A; Broekmann P
    ChemSusChem; 2017 Apr; 10(8):1733-1741. PubMed ID: 28101986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of heat on the development of electrochemical sensors on bare and modified Co3O4/CuO composite nanopowder carbon paste electrodes.
    Kumar M; Kumara Swamy BE
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():142-52. PubMed ID: 26478297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots.
    Park H; Ou HH; Colussi AJ; Hoffmann MR
    J Phys Chem A; 2015 May; 119(19):4658-66. PubMed ID: 25611343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.
    Shown I; Hsu HC; Chang YC; Lin CH; Roy PK; Ganguly A; Wang CH; Chang JK; Wu CI; Chen LC; Chen KH
    Nano Lett; 2014 Nov; 14(11):6097-103. PubMed ID: 25354234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical reduction of carbon dioxide to formate via nano-prism assembled CuO microspheres.
    Li D; Huang L; Liu T; Liu J; Zhen L; Wu J; Feng Y
    Chemosphere; 2019 Dec; 237():124527. PubMed ID: 31549649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor.
    Jayathilake BS; Bhattacharya S; Vaidehi N; Narayanan SR
    Acc Chem Res; 2019 Mar; 52(3):676-685. PubMed ID: 30741524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors.
    Li M; Han C; Zhang Y; Bo X; Guo L
    Anal Chim Acta; 2015 Feb; 861():25-35. PubMed ID: 25702271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol.
    Rajeshwar K; de Tacconi NR; Ghadimkhani G; Chanmanee W; Janáky C
    Chemphyschem; 2013 Jul; 14(10):2251-9. PubMed ID: 23712877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.