These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 25844976)
1. Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant. Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B Prep Biochem Biotechnol; 2016 May; 46(4):368-75. PubMed ID: 25844976 [TBL] [Abstract][Full Text] [Related]
2. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B Prep Biochem Biotechnol; 2016; 46(2):150-6. PubMed ID: 25807048 [TBL] [Abstract][Full Text] [Related]
3. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
4. Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs). Ma X; Zheng H; Huang H; Liu Y; Ruan R Appl Biochem Biotechnol; 2014 Oct; 174(4):1631-1650. PubMed ID: 25138600 [TBL] [Abstract][Full Text] [Related]
5. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL; Chang JS Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [TBL] [Abstract][Full Text] [Related]
6. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862 [TBL] [Abstract][Full Text] [Related]
7. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Wong YK; Ho YH; Ho KC; Leung HM; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198 [TBL] [Abstract][Full Text] [Related]
8. Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Arora N; Philippidis GP Sci Rep; 2021 Mar; 11(1):6779. PubMed ID: 33762646 [TBL] [Abstract][Full Text] [Related]
9. Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Kitcha S; Cheirsilp B Appl Biochem Biotechnol; 2014 May; 173(2):522-34. PubMed ID: 24676571 [TBL] [Abstract][Full Text] [Related]
10. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses. Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438 [TBL] [Abstract][Full Text] [Related]
11. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Münkel R; Schmid-Staiger U; Werner A; Hirth T Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347 [TBL] [Abstract][Full Text] [Related]
12. Lipid and biodiesel production by cultivation isolated strain Asadi P; Rad HA; Qaderi F J Environ Health Sci Eng; 2020 Dec; 18(2):573-585. PubMed ID: 33312584 [TBL] [Abstract][Full Text] [Related]
13. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
15. Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris. Wang W; Zhou W; Liu J; Li Y; Zhang Y Bioresour Technol; 2013 May; 136():24-9. PubMed ID: 23548401 [TBL] [Abstract][Full Text] [Related]
16. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Atta M; Idris A; Bukhari A; Wahidin S Bioresour Technol; 2013 Nov; 148():373-8. PubMed ID: 24063820 [TBL] [Abstract][Full Text] [Related]
17. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Hultberg M; Jönsson HL; Bergstrand KJ; Carlsson AS Bioresour Technol; 2014 May; 159():465-7. PubMed ID: 24718357 [TBL] [Abstract][Full Text] [Related]
18. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements. Chen CY; Chang HY Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521 [TBL] [Abstract][Full Text] [Related]
19. Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation. Ho SH; Chen CN; Lai YY; Lu WB; Chang JS Bioresour Technol; 2014 Jul; 163():128-35. PubMed ID: 24796513 [TBL] [Abstract][Full Text] [Related]
20. Chlorella vulgaris as a lipid source: Cultivation on air and seawater-simulating medium in a helicoidal photobioreactor. Frumento D; Aliakbarian B; Casazza AA; Converti A; Al Arni S; da Silva MF Biotechnol Prog; 2016 Mar; 32(2):279-84. PubMed ID: 26697953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]