These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Solvent-accessible surface area: How well can be applied to hot-spot detection? Martins JM; Ramos RM; Pimenta AC; Moreira IS Proteins; 2014 Mar; 82(3):479-90. PubMed ID: 24105801 [TBL] [Abstract][Full Text] [Related]
3. Modeling of the water network at protein-RNA interfaces. Li Y; Sutch BT; Bui HH; Gallaher TK; Haworth IS J Chem Inf Model; 2011 Jun; 51(6):1347-52. PubMed ID: 21612274 [TBL] [Abstract][Full Text] [Related]
4. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces. Melo R; Fieldhouse R; Melo A; Correia JD; Cordeiro MN; Gümüş ZH; Costa J; Bonvin AM; Moreira IS Int J Mol Sci; 2016 Jul; 17(8):. PubMed ID: 27472327 [TBL] [Abstract][Full Text] [Related]
5. Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Tuncbag N; Gursoy A; Keskin O Bioinformatics; 2009 Jun; 25(12):1513-20. PubMed ID: 19357097 [TBL] [Abstract][Full Text] [Related]
6. Maintaining solvent accessible surface area under rotamer substitution for protein design. Leaver-Fay A; Butterfoss GL; Snoeyink J; Kuhlman B J Comput Chem; 2007 Jun; 28(8):1336-41. PubMed ID: 17285560 [TBL] [Abstract][Full Text] [Related]
7. In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces. Wu Z; Hu G; Yang J; Peng Z; Uversky VN; Kurgan L FEBS Lett; 2015 Sep; 589(19 Pt A):2561-9. PubMed ID: 26297830 [TBL] [Abstract][Full Text] [Related]
8. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. Xia JF; Zhao XM; Song J; Huang DS BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884 [TBL] [Abstract][Full Text] [Related]
9. A feature-based approach to predict hot spots in protein-DNA binding interfaces. Zhang S; Zhao L; Zheng CH; Xia J Brief Bioinform; 2020 May; 21(3):1038-1046. PubMed ID: 30957840 [TBL] [Abstract][Full Text] [Related]
10. Extending the applicability of the O-ring theory to protein-DNA complexes. Ramos RM; Fernandes LF; Moreira IS Comput Biol Chem; 2013 Jun; 44():31-9. PubMed ID: 23537566 [TBL] [Abstract][Full Text] [Related]
11. SVM-Cabins: prediction of solvent accessibility using accumulation cutoff set and support vector machine. Wang JY; Lee HM; Ahmad S Proteins; 2007 Jul; 68(1):82-91. PubMed ID: 17436325 [TBL] [Abstract][Full Text] [Related]
16. Computational identification of binding energy hot spots in protein-RNA complexes using an ensemble approach. Pan Y; Wang Z; Zhan W; Deng L Bioinformatics; 2018 May; 34(9):1473-1480. PubMed ID: 29281004 [TBL] [Abstract][Full Text] [Related]
17. RBRDetector: improved prediction of binding residues on RNA-binding protein structures using complementary feature- and template-based strategies. Yang XX; Deng ZL; Liu R Proteins; 2014 Oct; 82(10):2455-71. PubMed ID: 24854765 [TBL] [Abstract][Full Text] [Related]
18. Assessment of a novel scoring method based on solvent accessible surface area descriptors. Núñez S; Venhorst J; Kruse CG J Chem Inf Model; 2010 Apr; 50(4):480-6. PubMed ID: 20356089 [TBL] [Abstract][Full Text] [Related]
19. A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Ali SA; Hassan MI; Islam A; Ahmad F Curr Protein Pept Sci; 2014; 15(5):456-76. PubMed ID: 24678666 [TBL] [Abstract][Full Text] [Related]
20. DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts. Li Z; Wong L; Li J BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S5. PubMed ID: 21689480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]