These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 25845480)

  • 1. Effect of planar microelectrode geometry on neuron stimulation: finite element modeling and experimental validation of the efficient electrode shape.
    Ghazavi A; Westwick D; Xu F; Wijdenes P; Syed N; Dalton C
    J Neurosci Methods; 2015 Jun; 248():51-8. PubMed ID: 25845480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):501-9. PubMed ID: 12723062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular stimulation window explained by a geometry-based model of the neuron-electrode contact.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1591-9. PubMed ID: 12549741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording.
    Breckenridge LJ; Wilson RJ; Connolly P; Curtis AS; Dow JA; Blackshaw SE; Wilkinson CD
    J Neurosci Res; 1995 Oct; 42(2):266-76. PubMed ID: 8568928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of a floating microstimulator.
    Sahin M; Ur-Rahman SS
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):227-34. PubMed ID: 17601192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of high-perimeter planar electrodes for efficient neural stimulation.
    Wei XF; Grill WM
    Front Neuroeng; 2009; 2():15. PubMed ID: 19936312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits.
    Cantrell DR; Troy JB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2768-71. PubMed ID: 19163279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation.
    Sel D; Mazeres S; Teissie J; Miklavcic D
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1221-32. PubMed ID: 14619992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel fractal planar electrode design for efficient neural stimulation.
    Xuefeng Wei ; Benmassaoud M; Meller M; Kuchibhatla S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1802-1805. PubMed ID: 28268678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new 3-D finite-element model based on thin-film approximation for microelectrode array recording of extracellular action potential.
    Moulin C; Glière A; Barbier D; Joucla S; Yvert B; Mailley P; Guillemaud R
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):683-92. PubMed ID: 18270005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective electrical interfaces with the nervous system.
    Rutten WL
    Annu Rev Biomed Eng; 2002; 4():407-52. PubMed ID: 12117764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-D flexible nano-textured high-density microelectrode arrays for high-performance neuro-monitoring and neuro-stimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1072-82. PubMed ID: 24876130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new 3D finite element model of extracellular action potentials recording with a microelectrode in a tissue slice.
    Moulin C; Glière A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():603-6. PubMed ID: 17946407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focalizing electrical neural stimulation with penetrating microelectrode arrays: a modeling study.
    Joucla S; Rousseau L; Yvert B
    J Neurosci Methods; 2012 Jul; 209(1):250-4. PubMed ID: 22677176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations to study spatial extent of stimulation and effect of electrode-tissue gap in subretinal implants.
    Kasi H; Bertsch A; Guyomard JL; Kolomiets B; Picaud S; Pelizzone M; Renaud P
    Med Eng Phys; 2011 Jul; 33(6):755-63. PubMed ID: 21354850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes.
    Raspopovic S; Capogrosso M; Badia J; Navarro X; Micera S
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):395-404. PubMed ID: 22481834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.