These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 25845481)
1. Motor imagery classification via combinatory decomposition of ERP and ERSP using sparse nonnegative matrix factorization. Lu N; Yin T J Neurosci Methods; 2015 Jul; 249():41-9. PubMed ID: 25845481 [TBL] [Abstract][Full Text] [Related]
2. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification. Lu N; Li T; Pan J; Ren X; Feng Z; Miao H Comput Biol Med; 2015 May; 60():32-9. PubMed ID: 25747342 [TBL] [Abstract][Full Text] [Related]
3. Electroencephalogram classification in motor-imagery brain-computer interface applications based on double-constraint nonnegative matrix factorization. Su J; Yang Z; Yan W; Sun W Physiol Meas; 2020 Aug; 41(7):075007. PubMed ID: 32590360 [TBL] [Abstract][Full Text] [Related]
4. Uncorrelated multiway discriminant analysis for motor imagery EEG classification. Liu Y; Zhao Q; Zhang L Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750 [TBL] [Abstract][Full Text] [Related]
5. Active data selection for motor imagery EEG classification. Tomida N; Tanaka T; Ono S; Yamagishi M; Higashi H IEEE Trans Biomed Eng; 2015 Feb; 62(2):458-67. PubMed ID: 25248173 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the performance of motor imagery EEG classification using phase features. Hsu WY Clin EEG Neurosci; 2015 Apr; 46(2):113-8. PubMed ID: 25404753 [TBL] [Abstract][Full Text] [Related]
7. Decision tree structure based classification of EEG signals recorded during two dimensional cursor movement imagery. Aydemir O; Kayikcioglu T J Neurosci Methods; 2014 May; 229():68-75. PubMed ID: 24751647 [TBL] [Abstract][Full Text] [Related]
8. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. Kamousi B; Liu Z; He B IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895 [TBL] [Abstract][Full Text] [Related]
9. Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification. Zhang Y; Wang Y; Jin J; Wang X Int J Neural Syst; 2017 Mar; 27(2):1650032. PubMed ID: 27377661 [TBL] [Abstract][Full Text] [Related]
10. Simultaneously optimizing spatial spectral features based on mutual information for EEG classification. Meng J; Yao L; Sheng X; Zhang D; Zhu X IEEE Trans Biomed Eng; 2015 Jan; 62(1):227-40. PubMed ID: 25122834 [TBL] [Abstract][Full Text] [Related]
11. Classification of motor imagery BCI using multivariate empirical mode decomposition. Park C; Looney D; Naveed ur Rehman ; Ahrabian A; Mandic DP IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):10-22. PubMed ID: 23204288 [TBL] [Abstract][Full Text] [Related]
12. The use of EEG modifications due to motor imagery for brain-computer interfaces. Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254 [TBL] [Abstract][Full Text] [Related]
13. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface. Zhang Y; Zhou G; Jin J; Wang X; Cichocki A J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421 [TBL] [Abstract][Full Text] [Related]
14. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings. Ince NF; Arica S; Tewfik A J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207 [TBL] [Abstract][Full Text] [Related]
15. Nonnegative tensor factorization for continuous EEG classification. Lee H; Kim YD; Cichocki A; Choi S Int J Neural Syst; 2007 Aug; 17(4):305-17. PubMed ID: 17696294 [TBL] [Abstract][Full Text] [Related]
16. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface. Siuly ; Li Y; Paul Wen P Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135 [TBL] [Abstract][Full Text] [Related]
17. A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition. Miao M; Wang A; Liu F Med Biol Eng Comput; 2017 Sep; 55(9):1589-1603. PubMed ID: 28161876 [TBL] [Abstract][Full Text] [Related]
18. Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain-computer interface. Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK J Neural Eng; 2011 Jun; 8(3):036007. PubMed ID: 21478575 [TBL] [Abstract][Full Text] [Related]
19. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior. Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808 [TBL] [Abstract][Full Text] [Related]
20. Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition. Hsu WY Clin EEG Neurosci; 2013 Oct; 44(4):257-64. PubMed ID: 23536381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]