These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25845535)
1. A sensitive and high throughput bacterial luminescence assay for assessing aquatic toxicity--the BLT-Screen. van de Merwe JP; Leusch FD Environ Sci Process Impacts; 2015 May; 17(5):947-55. PubMed ID: 25845535 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Lopez-Roldan R; Kazlauskaite L; Ribo J; Riva MC; González S; Cortina JL Sci Total Environ; 2012 Dec; 440():307-13. PubMed ID: 22726523 [TBL] [Abstract][Full Text] [Related]
4. Toxicity testing with luminescent bacteria--characterization of an automated method for the combined assessment of acute and chronic effects. Menz J; Schneider M; Kümmerer K Chemosphere; 2013 Oct; 93(6):990-6. PubMed ID: 23806483 [TBL] [Abstract][Full Text] [Related]
5. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri. Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603 [TBL] [Abstract][Full Text] [Related]
6. A DNA-based assay for toxic chemicals in wastewater. Foreman AL; Phillips L; Kanellis VG; Hammoudeh D; Naumann C; Wong H; Chisari R; Hibbert DB; Lee GS; Patra R; Julli M; Chapman J; Cooke AR; dos Remedios CG Environ Toxicol Chem; 2011 Aug; 30(8):1810-8. PubMed ID: 21560144 [TBL] [Abstract][Full Text] [Related]
7. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR. Yuan N; Wang C; Pei Y J Environ Manage; 2016 Nov; 182():21-28. PubMed ID: 27454093 [TBL] [Abstract][Full Text] [Related]
8. Phytotoxkit/Phytotestkit and Microtox® as tools for toxicity assessment of sediments. Baran A; Tarnawski M Ecotoxicol Environ Saf; 2013 Dec; 98():19-27. PubMed ID: 24210349 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the toxicity of river and creek sediments in Hungary with two different methods. Torokne A; Toro K Environ Toxicol; 2010 Oct; 25(5):504-9. PubMed ID: 20549625 [TBL] [Abstract][Full Text] [Related]
10. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Abbas M; Adil M; Ehtisham-Ul-Haque S; Munir B; Yameen M; Ghaffar A; Shar GA; Asif Tahir M; Iqbal M Sci Total Environ; 2018 Jun; 626():1295-1309. PubMed ID: 29898537 [TBL] [Abstract][Full Text] [Related]
11. Rapid assessment of heavy metal toxicity using bioluminescent bacteria Photobacterium leiognathi strain GoMGm1. Muneeswaran T; Kalyanaraman N; Vennila T; Rajesh Kannan M; Ramakritinan CM Environ Monit Assess; 2021 Feb; 193(3):109. PubMed ID: 33537887 [TBL] [Abstract][Full Text] [Related]
12. Toxicity assessment of total petroleum hydrocarbons in aquatic environments using the bioluminescent bacterium Aliivibrio fischeri. Mirjani M; Soleimani M; Salari V Ecotoxicol Environ Saf; 2021 Jan; 207():111554. PubMed ID: 33254411 [TBL] [Abstract][Full Text] [Related]
13. Toxicity of metals and organic chemicals evaluated with bioluminescence assays. Ren S; Frymier PD Chemosphere; 2005 Feb; 58(5):543-50. PubMed ID: 15620747 [TBL] [Abstract][Full Text] [Related]
14. Estimating the environmental impact of micro-pollutants in the low Ebro River (Spain): an approach based on screening toxicity with Vibrio fischeri. Ocampo-Duque W; Sierra J; Ferré-Huguet N; Schuhmacher M; Domingo JL Chemosphere; 2008 Jun; 72(5):715-21. PubMed ID: 18479729 [TBL] [Abstract][Full Text] [Related]
15. Bioanalytical tools for the evaluation of organic micropollutants during sewage treatment, water recycling and drinking water generation. Macova M; Toze S; Hodgers L; Mueller JF; Bartkow M; Escher BI Water Res; 2011 Aug; 45(14):4238-47. PubMed ID: 21704353 [TBL] [Abstract][Full Text] [Related]
16. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity. Rosen G; Osorio-Robayo A; Rivera-Duarte I; Lapota D Arch Environ Contam Toxicol; 2008 May; 54(4):606-11. PubMed ID: 18026774 [TBL] [Abstract][Full Text] [Related]
17. Toxicity identification in metal plating effluent: implications in establishing effluent discharge limits using bioassays in Korea. Kim E; Jun YR; Jo HJ; Shim SB; Jung J Mar Pollut Bull; 2008; 57(6-12):637-44. PubMed ID: 18406429 [TBL] [Abstract][Full Text] [Related]
18. Microbial bioassays to assess the toxicity of solid-associated contaminants. Rönnpagel K; Liss W; Ahlf W Ecotoxicol Environ Saf; 1995 Jul; 31(2):99-103. PubMed ID: 8521786 [TBL] [Abstract][Full Text] [Related]
19. Assessment of sediment ecotoxicological status as a complementary tool for the evaluation of surface water quality: the Ebro river basin case study. Roig N; Sierra J; Nadal M; Moreno-Garrido I; Nieto E; Hampel M; Gallego EP; Schuhmacher M; Blasco J Sci Total Environ; 2015 Jan; 503-504():269-78. PubMed ID: 25046984 [TBL] [Abstract][Full Text] [Related]
20. A novel continuous toxicity test system using a luminously modified freshwater bacterium. Cho JC; Park KJ; Ihm HS; Park JE; Kim SY; Kang I; Lee KH; Jahng D; Lee DH; Kim SJ Biosens Bioelectron; 2004 Sep; 20(2):338-44. PubMed ID: 15308239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]