BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25845586)

  • 1. iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1: A global response to n-octadecane induced stress.
    Liu H; Sun WB; Liang RB; Huang L; Hou JL; Liu JH
    J Proteomics; 2015 Jun; 123():14-28. PubMed ID: 25845586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomics analysis of proteins involved in alkane uptake comparing the profiling of Pseudomonas aeruginosa SJTD-1 in response to n-octadecane and n-hexadecane.
    Zhou X; Xing X; Hou J; Liu J
    PLoS One; 2017; 12(6):e0179842. PubMed ID: 28662172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of multiple alkane hydroxylase systems in biodegradation of crude oil n-alkane pollution by Pseudomonas aeruginosa DN1.
    Li YP; Pan JC; Ma YL
    J Appl Microbiol; 2020 Jan; 128(1):151-160. PubMed ID: 31566849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes.
    Liu H; Xu J; Liang R; Liu J
    PLoS One; 2014; 9(8):e105506. PubMed ID: 25165808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil.
    Xu J; Liu H; Liu J; Liang R
    Wei Sheng Wu Xue Bao; 2015 Jun; 55(6):755-63. PubMed ID: 26563001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exoproteome analysis of Pseudomonas aeruginosa response to high alkane stress.
    Dou Y; Zhou X; Liu X; Hou J
    Arch Microbiol; 2024 Jan; 206(1):51. PubMed ID: 38175208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unravelling the role of GntR on the regulation of alkane hydroxylase AlkB
    Pan J; Wei F; Liu Y; Xu Y; Ma Y
    J Appl Microbiol; 2022 Apr; 132(4):2812-2822. PubMed ID: 35060670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CrgA Protein Represses AlkB2 Monooxygenase and Regulates the Degradation of Medium-to-Long-Chain
    Ji N; Wang X; Yin C; Peng W; Liang R
    Front Microbiol; 2019; 10():400. PubMed ID: 30915046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Global Proteomic Change in Petroleum Hydrocarbon-Degrading Pseudomonas aeruginosa in Response to High and Low Concentrations of Petroleum Hydrocarbons.
    Wang JD; Li XX; Qu CT
    Curr Microbiol; 2019 Nov; 76(11):1270-1277. PubMed ID: 31401778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis.
    van Beilen JB; Marín MM; Smits TH; Röthlisberger M; Franchini AG; Witholt B; Rojo F
    Environ Microbiol; 2004 Mar; 6(3):264-73. PubMed ID: 14871210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5.
    Liu C; Wang W; Wu Y; Zhou Z; Lai Q; Shao Z
    Environ Microbiol; 2011 May; 13(5):1168-78. PubMed ID: 21261799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa.
    Smits TH; Witholt B; van Beilen JB
    Antonie Van Leeuwenhoek; 2003; 84(3):193-200. PubMed ID: 14574114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LaoABCR, a Novel System for Oxidation of Long-Chain Alcohols Derived from SDS and Alkane Degradation in Pseudomonas aeruginosa.
    Panasia G; Philipp B
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29678916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic and stress responses of Acinetobacter oleivorans DR1 during long-chain alkane degradation.
    Park C; Shin B; Jung J; Lee Y; Park W
    Microb Biotechnol; 2017 Nov; 10(6):1809-1823. PubMed ID: 28857443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alkane monooxygenase (AlkB) family in which all electron transfer partners are covalently bound to the oxygen-activating hydroxylase.
    Williams SC; Luongo D; Orman M; Vizcarra CL; Austin RN
    J Inorg Biochem; 2022 Mar; 228():111707. PubMed ID: 34990970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AlmA involved in the long-chain
    Yin C-F; Nie Y; Li T; Zhou N-Y
    Appl Environ Microbiol; 2024 Jan; 90(1):e0162523. PubMed ID: 38168668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome sequence of Pseudomonas aeruginosa strain SJTD-1, a bacterium capable of degrading long-chain alkanes and crude oil.
    Liu H; Liang R; Tao F; Ma C; Liu Y; Liu X; Liu J
    J Bacteriol; 2012 Sep; 194(17):4783-4. PubMed ID: 22887679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The long-chain alkane metabolism network of Alcanivorax dieselolei.
    Wang W; Shao Z
    Nat Commun; 2014 Dec; 5():5755. PubMed ID: 25502912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal Structure of TetR Family Repressor AlkX from Dietzia sp. Strain DQ12-45-1b Implicated in Biodegradation of
    Liang JL; Gao Y; He Z; Nie Y; Wang M; JiangYang JH; Zhang XC; Shu WS; Wu XL
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821550
    [No Abstract]   [Full Text] [Related]  

  • 20. iTRAQ based characterization of proteomic change in petroleum hydrocarbon-degrading Pseudomonas aeruginosa in different pH conditions.
    Wang JD
    Arch Microbiol; 2022 Apr; 204(5):263. PubMed ID: 35430693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.