BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25846380)

  • 1. Interventional MR elastography for MRI-guided percutaneous procedures.
    Corbin N; Vappou J; Breton E; Boehler Q; Barbé L; Renaud P; de Mathelin M
    Magn Reson Med; 2016 Mar; 75(3):1110-8. PubMed ID: 25846380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K-space data processing for magnetic resonance elastography (MRE).
    Corbin N; Breton E; de Mathelin M; Vappou J
    MAGMA; 2017 Apr; 30(2):203-213. PubMed ID: 27822656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous fat-referenced proton resonance frequency shift thermometry and MR elastography for the monitoring of thermal ablations.
    Kim K; Breton E; Gangi A; Vappou J
    Magn Reson Med; 2020 Jul; 84(1):339-347. PubMed ID: 31823418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural networks for magnetic resonance elastography acceleration in thermal-ablation monitoring.
    Shan X; Yang J; Xu P; Hu L; Ge H
    Med Phys; 2022 Mar; 49(3):1803-1813. PubMed ID: 35061250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance elastography of the human brain using a multiphase DENSE acquisition.
    Strasser J; Haindl MT; Stollberger R; Fazekas F; Ropele S
    Magn Reson Med; 2019 Jun; 81(6):3578-3587. PubMed ID: 30693964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring MR-guided high intensity focused ultrasound therapy using transient supersonic shear wave MR-elastography.
    Ishak O; Breton E; Choquet K; Josset A; Cabras P; Vappou J
    Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36595333
    [No Abstract]   [Full Text] [Related]  

  • 7. MR-ARFI-based method for the quantitative measurement of tissue elasticity: application for monitoring HIFU therapy.
    Vappou J; Bour P; Marquet F; Ozenne V; Quesson B
    Phys Med Biol; 2018 May; 63(9):095018. PubMed ID: 29633958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prostate MR elastography with transperineal electromagnetic actuation and a fast fractionally encoded steady-state gradient echo sequence.
    Sahebjavaher RS; Frew S; Bylinskii A; ter Beek L; Garteiser P; Honarvar M; Sinkus R; Salcudean S
    NMR Biomed; 2014 Jul; 27(7):784-94. PubMed ID: 24764278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of in-vivo local shear modulus by combining multiple phase offsets mr elastography.
    Suga M; Matsuda T; Minato K; Oshiro O; Chihara K; Okamoto J; Takizawa O; Komori M; Takahashi T
    Stud Health Technol Inform; 2001; 84(Pt 2):933-7. PubMed ID: 11604870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method for MR elastography: a gradient-echo type multi-echo sequence.
    Numano T; Mizuhara K; Hata J; Washio T; Homma K
    Magn Reson Imaging; 2015 Jan; 33(1):31-7. PubMed ID: 25311570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of in vivo laser ablation using MR elastography with an inertial driver.
    Chen J; Woodrum DA; Glaser KJ; Murphy MC; Gorny K; Ehman R
    Magn Reson Med; 2014 Jul; 72(1):59-67. PubMed ID: 23904298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-real-time feedback control system for liver thermal ablations based on self-referenced temperature imaging.
    Keserci BM; Kokuryo D; Suzuki K; Kumamoto E; Okada A; Khankan AA; Kuroda K
    Eur J Radiol; 2006 Aug; 59(2):175-82. PubMed ID: 16713695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR elastography at 1 Hz of gelatin phantoms using 3D or 4D acquisition.
    Gordon-Wylie SW; Solamen LM; McGarry MDJ; Zeng W; VanHouten E; Gilbert G; Weaver JB; Paulsen KD
    J Magn Reson; 2018 Nov; 296():112-120. PubMed ID: 30241018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous MR elastography and diffusion acquisitions: diffusion-MRE (dMRE).
    Yin Z; Magin RL; Klatt D
    Magn Reson Med; 2014 May; 71(5):1682-8. PubMed ID: 24648402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo, high-frequency three-dimensional cardiac MR elastography: Feasibility in normal volunteers.
    Arani A; Glaser KL; Arunachalam SP; Rossman PJ; Lake DS; Trzasko JD; Manduca A; McGee KP; Ehman RL; Araoz PA
    Magn Reson Med; 2017 Jan; 77(1):351-360. PubMed ID: 26778442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harmonic wideband simultaneous dual-frequency MR Elastography.
    Sango Solanas P; Tse Ve Koon K; Ratiney H; Millioz F; Caussy C; Beuf O
    NMR Biomed; 2021 Feb; 34(2):e4442. PubMed ID: 33179393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo MR acoustic radiation force imaging in the porcine liver.
    Holbrook AB; Ghanouni P; Santos JM; Medan Y; Butts Pauly K
    Med Phys; 2011 Sep; 38(9):5081-9. PubMed ID: 21978053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-domain-based strain estimation and high-frame-rate imaging for quasi-static elastography.
    Ramalli A; Basset O; Cachard C; Boni E; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):817-24. PubMed ID: 22547293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of simultaneous temperature and tissue stiffness detection by MRE.
    Le Y; Glaser K; Rouviere O; Ehman R; Felmlee JP
    Magn Reson Med; 2006 Mar; 55(3):700-5. PubMed ID: 16463357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise reduction for ultrasonic elastography using transmit-side frequency compounding: a preliminary study.
    Cui S; Liu DC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):509-16. PubMed ID: 21429843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.