These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A matter of attention: Crossmodal congruence enhances and impairs performance in a novel trimodal matching paradigm. Misselhorn J; Daume J; Engel AK; Friese U Neuropsychologia; 2016 Jul; 88():113-122. PubMed ID: 26209356 [TBL] [Abstract][Full Text] [Related]
7. Attention modulates visual-tactile interaction in spatial pattern matching. Göschl F; Engel AK; Friese U PLoS One; 2014; 9(9):e106896. PubMed ID: 25203102 [TBL] [Abstract][Full Text] [Related]
8. EEG-power and -coherence changes in a unimodal and a crossmodal working memory task with visual and kinesthetic stimuli. Seemüller A; Müller EM; Rösler F Int J Psychophysiol; 2012 Jan; 83(1):87-95. PubMed ID: 22079828 [TBL] [Abstract][Full Text] [Related]
9. Neural correlates of visuo-tactile crossmodal paired-associate learning and memory in humans. Gui P; Ku Y; Li L; Li X; Bodner M; Lenz FA; Wang L; Zhou YD Neuroscience; 2017 Oct; 362():181-195. PubMed ID: 28843996 [TBL] [Abstract][Full Text] [Related]
10. Multisensory stimulation with or without saccades: fMRI evidence for crossmodal effects on sensory-specific cortices that reflect multisensory location-congruence rather than task-relevance. Macaluso E; Frith CD; Driver J Neuroimage; 2005 Jun; 26(2):414-25. PubMed ID: 15907299 [TBL] [Abstract][Full Text] [Related]
12. The contribution of response conflict, multisensory integration, and body-mediated attention to the crossmodal congruency effect. Marini F; Romano D; Maravita A Exp Brain Res; 2017 Mar; 235(3):873-887. PubMed ID: 27913817 [TBL] [Abstract][Full Text] [Related]
13. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings. Ku Y; Ohara S; Wang L; Lenz FA; Hsiao SS; Bodner M; Hong B; Zhou YD PLoS One; 2007 Aug; 2(8):e771. PubMed ID: 17712419 [TBL] [Abstract][Full Text] [Related]
14. The attentional-relevance and temporal dynamics of visual-tactile crossmodal interactions differentially influence early stages of somatosensory processing. Popovich C; Staines WR Brain Behav; 2014 Mar; 4(2):247-60. PubMed ID: 24683517 [TBL] [Abstract][Full Text] [Related]
15. Early beta oscillations in multisensory association areas underlie crossmodal performance enhancement. Michail G; Senkowski D; Holtkamp M; Wächter B; Keil J Neuroimage; 2022 Aug; 257():119307. PubMed ID: 35577024 [TBL] [Abstract][Full Text] [Related]
16. Increases in pre-stimulus theta and alpha oscillations precede successful encoding of crossmodal associations. Ostrowski J; Rose M Sci Rep; 2024 Apr; 14(1):7895. PubMed ID: 38570599 [TBL] [Abstract][Full Text] [Related]
17. Top down influence on visuo-tactile interaction modulates neural oscillatory responses. Kanayama N; Tamè L; Ohira H; Pavani F Neuroimage; 2012 Feb; 59(4):3406-17. PubMed ID: 22173297 [TBL] [Abstract][Full Text] [Related]
18. Multisensory processing and neural oscillatory responses: separation of visuotactile congruency effect and corresponding electroencephalogram activities. Kanayama N; Ohira H Neuroreport; 2009 Feb; 20(3):289-93. PubMed ID: 19190521 [TBL] [Abstract][Full Text] [Related]
19. Crossmodal object recognition in rats with and without multimodal object pre-exposure: no effect of hippocampal lesions. Reid JM; Jacklin DL; Winters BD Neurobiol Learn Mem; 2012 Oct; 98(3):311-9. PubMed ID: 22975081 [TBL] [Abstract][Full Text] [Related]
20. Modality-specific spectral dynamics in response to visual and tactile sequential shape information processing tasks: An MEG study using multivariate pattern classification analysis. Gohel B; Lee P; Jeong Y Brain Res; 2016 Aug; 1644():39-52. PubMed ID: 27134037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]