These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Neurotransmission by neurons that use serotonin, noradrenaline, glutamate, glycine, and gamma-aminobutyric acid in the normal and injured spinal cord. Shapiro S Neurosurgery; 1997 Jan; 40(1):168-76; discussion 177. PubMed ID: 8971839 [TBL] [Abstract][Full Text] [Related]
23. Physiological functions of GABA-induced depolarizations in the developing rat spinal cord. Ziskind-Conhaim L Perspect Dev Neurobiol; 1998; 5(2-3):279-87. PubMed ID: 9777643 [TBL] [Abstract][Full Text] [Related]
24. Plasticity of spinal cord locomotor networks and contribution of cation-chloride cotransporters. Vinay L; Jean-Xavier C Brain Res Rev; 2008 Jan; 57(1):103-10. PubMed ID: 17949820 [TBL] [Abstract][Full Text] [Related]
25. The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. Dickenson AH; Chapman V; Green GM Gen Pharmacol; 1997 May; 28(5):633-8. PubMed ID: 9184794 [TBL] [Abstract][Full Text] [Related]
26. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord. Inquimbert P; Rodeau JL; Schlichter R Eur J Neurosci; 2007 Nov; 26(10):2940-9. PubMed ID: 18001289 [TBL] [Abstract][Full Text] [Related]
27. Dorsal root and dorsal column mediated synaptic inputs to reticulospinal neurons in lampreys: involvement of glutamatergic, glycinergic, and GABAergic transmission. Dubuc R; Bongianni F; Ohta Y; Grillner S J Comp Neurol; 1993 Jan; 327(2):251-9. PubMed ID: 8381143 [TBL] [Abstract][Full Text] [Related]
29. Immunocytochemical localization of glycine in the lamprey spinal cord with reference to GABAergic and glutamatergic synapses: a light and electron microscopic study. Shupliakov O; Fagerstedt P; Ottersen OP; Storm-Mathiesen J; Grillner S; Brodin L Acta Biol Hung; 1996; 47(1-4):393-410. PubMed ID: 9124008 [TBL] [Abstract][Full Text] [Related]
30. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. Berki AC; O'Donovan MJ; Antal M J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469 [TBL] [Abstract][Full Text] [Related]
31. Role of microcircuit structure and input integration in hippocampal interneuron recruitment and plasticity. Bartos M; Alle H; Vida I Neuropharmacology; 2011 Apr; 60(5):730-9. PubMed ID: 21195097 [TBL] [Abstract][Full Text] [Related]
32. Decreased intracellular GABA levels contribute to spinal cord stimulation-induced analgesia in rats suffering from painful peripheral neuropathy: the role of KCC2 and GABA(A) receptor-mediated inhibition. Janssen SP; Gerard S; Raijmakers ME; Truin M; Van Kleef M; Joosten EA Neurochem Int; 2012 Jan; 60(1):21-30. PubMed ID: 22107704 [TBL] [Abstract][Full Text] [Related]
33. GABAergic inhibition in the neostriatum. Wilson CJ Prog Brain Res; 2007; 160():91-110. PubMed ID: 17499110 [TBL] [Abstract][Full Text] [Related]
34. Facilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn. Fukushima T; Ohtsubo T; Tsuda M; Yanagawa Y; Hori Y J Neurophysiol; 2009 Sep; 102(3):1459-71. PubMed ID: 19369358 [TBL] [Abstract][Full Text] [Related]
35. BDNF-mediated modulation of GABA and glycine release in dorsal horn lamina II from postnatal rats. Bardoni R; Ghirri A; Salio C; Prandini M; Merighi A Dev Neurobiol; 2007 Jun; 67(7):960-75. PubMed ID: 17506495 [TBL] [Abstract][Full Text] [Related]
36. Transmitters involved in central processing of nociceptive information. Duggan AW Anaesth Intensive Care; 1982 May; 10(2):133-8. PubMed ID: 6179436 [TBL] [Abstract][Full Text] [Related]
37. Spinal cord compression injury in adult rats initiates changes in dorsal horn remodeling that may correlate with development of neuropathic pain. Kalous A; Osborne PB; Keast JR J Comp Neurol; 2009 Apr; 513(6):668-84. PubMed ID: 19235905 [TBL] [Abstract][Full Text] [Related]
38. Loss of glycinergic and GABAergic inhibition in chronic pain--contributions of inflammation and microglia. Zeilhofer HU Int Immunopharmacol; 2008 Feb; 8(2):182-7. PubMed ID: 18182224 [TBL] [Abstract][Full Text] [Related]
39. Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: a study in streptozotocin diabetic rats. Morgado C; Pinto-Ribeiro F; Tavares I Neurosci Lett; 2008 Jun; 438(1):102-6. PubMed ID: 18457921 [TBL] [Abstract][Full Text] [Related]
40. Metaplasticity within the spinal cord: Evidence brain-derived neurotrophic factor (BDNF), tumor necrosis factor (TNF), and alterations in GABA function (ionic plasticity) modulate pain and the capacity to learn. Grau JW; Huang YJ Neurobiol Learn Mem; 2018 Oct; 154():121-135. PubMed ID: 29635030 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]