These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25846965)

  • 21. From Ambergris to (-)-Ambrox: Chemistry Meets Biocatalysis for Sustainable (-)-Ambrox Production.
    Eichhorn E; Schroeder F
    J Agric Food Chem; 2023 Apr; 71(13):5042-5052. PubMed ID: 36961824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene discovery of modular diterpene metabolism in nonmodel systems.
    Zerbe P; Hamberger B; Yuen MM; Chiang A; Sandhu HK; Madilao LL; Nguyen A; Hamberger B; Bach SS; Bohlmann J
    Plant Physiol; 2013 Jun; 162(2):1073-91. PubMed ID: 23613273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sclareol and linalyl acetate are produced by glandular trichomes through the MEP pathway.
    Chalvin C; Drevensek S; Gilard F; Mauve C; Chollet C; Morin H; Nicol E; Héripré E; Kriegshauser L; Gakière B; Dron M; Bendahmane A; Boualem A
    Hortic Res; 2021 Oct; 8(1):206. PubMed ID: 34593779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosynthesis and biological functions of terpenoids in plants.
    Tholl D
    Adv Biochem Eng Biotechnol; 2015; 148():63-106. PubMed ID: 25583224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two residues determine the product profile of the class II diterpene synthases TPS14 and TPS21 of Tripterygium wilfordii.
    Hansen NL; Nissen JN; Hamberger B
    Phytochemistry; 2017 Jun; 138():52-56. PubMed ID: 28279524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Advances on the microbial synthesis of plant-derived diterpenoids].
    Cheng Y; Tang H; Sun L; Hu Y; Ma Y; Guo J; Huang L
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2265-2283. PubMed ID: 37401594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Research advances of diterpene synthase].
    He YF; Gao W; Liu TS; Li WY; Huang LQ
    Yao Xue Xue Bao; 2011 Sep; 46(9):1019-25. PubMed ID: 22121769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A database-driven approach identifies additional diterpene synthase activities in the mint family (Lamiaceae).
    Johnson SR; Bhat WW; Bibik J; Turmo A; Hamberger B; Evolutionary Mint Genomics Consortium ; Hamberger B
    J Biol Chem; 2019 Jan; 294(4):1349-1362. PubMed ID: 30498089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carnosic acid biosynthesis elucidated by a synthetic biology platform.
    Ignea C; Athanasakoglou A; Ioannou E; Georgantea P; Trikka FA; Loupassaki S; Roussis V; Makris AM; Kampranis SC
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3681-6. PubMed ID: 26976595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diterpene synthases from Leonurus japonicus elucidate epoxy-bridge formation of spiro-labdane diterpenoids.
    Wang J; Mao Y; Ma Y; Yang J; Jin B; Lin H; Tang J; Zeng W; Zhao Y; Gao W; Peters RJ; Guo J; Cui G; Huang L
    Plant Physiol; 2022 May; 189(1):99-111. PubMed ID: 35157086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation, chemical, and biotransformation routes of labdane-type diterpenes.
    Frija LM; Frade RF; Afonso CA
    Chem Rev; 2011 Aug; 111(8):4418-52. PubMed ID: 21618966
    [No Abstract]   [Full Text] [Related]  

  • 32. Plant and bacterial systems biology as platform for plant synthetic bio(techno)logy.
    Zurbriggen MD; Moor A; Weber W
    J Biotechnol; 2012 Jul; 160(1-2):80-90. PubMed ID: 22306308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combinatorial biosynthesis and the basis for substrate promiscuity in class I diterpene synthases.
    Jia M; Mishra SK; Tufts S; Jernigan RL; Peters RJ
    Metab Eng; 2019 Sep; 55():44-58. PubMed ID: 31220664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibacterial and cytotoxic activity of the acetone extract of the flowers of Salvia sclarea and some natural products.
    Hayet E; Fatma B; Souhir I; Waheb FA; Abderaouf K; Mahjoub A; Maha M
    Pak J Pharm Sci; 2007 Apr; 20(2):146-8. PubMed ID: 17416571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of higher plants and algae for isoprenoid production.
    Kempinski C; Jiang Z; Bell S; Chappell J
    Adv Biochem Eng Biotechnol; 2015; 148():161-99. PubMed ID: 25636485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of synthetic biology to elucidation of plant mono-, sesqui-, and diterpenoid metabolism.
    Kitaoka N; Lu X; Yang B; Peters RJ
    Mol Plant; 2015 Jan; 8(1):6-16. PubMed ID: 25578268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative metabolism of ambrox and sclareolide by Botrytis cinerea.
    Farooq A; Tahara S
    Z Naturforsch C J Biosci; 2000; 55(5-6):341-6. PubMed ID: 10928544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational analysis of white spruce (Picea glauca) ent-kaurene synthase (PgKS) reveals common and distinct mechanisms of conifer diterpene synthases of general and specialized metabolism.
    Zerbe P; Chiang A; Bohlmann J
    Phytochemistry; 2012 Feb; 74():30-9. PubMed ID: 22177479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.
    Liu Y; Shin HD; Li J; Liu L
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1109-18. PubMed ID: 25547833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent results in the search for new molecules with ambergris odor.
    Panten J; Surburg H; Hölscher B
    Chem Biodivers; 2014 Oct; 11(10):1639-50. PubMed ID: 25329789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.