These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25846984)

  • 21. Multiphase electrode microbial fuel cell system that simultaneously converts organics coexisting in water and sediment phases into electricity.
    An J; Moon H; Chang IS
    Environ Sci Technol; 2010 Sep; 44(18):7145-50. PubMed ID: 20687550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of anode hydrodynamics on the sensitivity of microbial fuel cell based biosensors and the biological mechanism.
    Yi Y; Xie B; Zhao T; Qian Z; Liu H
    Bioelectrochemistry; 2020 Apr; 132():107351. PubMed ID: 31846827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate concentration dependence of voltage and power production characteristics in two-chambered mediator-less microbial fuel cells with acetate and peptone substrates.
    Tardy GM; Lóránt B; Lóka M
    Biotechnol Lett; 2017 Mar; 39(3):383-389. PubMed ID: 27858319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell using marine sediment as bio-matrix.
    Liu Z; Li H; Liu J; Su Z
    J Appl Microbiol; 2008 Apr; 104(4):1163-70. PubMed ID: 18005344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of control mode on the sensitivity of a microbial fuel cell biosensor with Shewanella loihica PV-4 and the underlying bioelectrochemical mechanism.
    Yi Y; Xie B; Zhao T; Qian Z; Liu H
    Bioelectrochemistry; 2019 Aug; 128():109-117. PubMed ID: 30978517
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.
    Hidalgo D; Sacco A; Hernández S; Tommasi T
    Bioresour Technol; 2015 Nov; 195():139-46. PubMed ID: 26166463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Threshold concentration of easily assimilable organic carton in feedwater for biofouling of spiral-wound membranes.
    Hijnen WA; Biraud D; Cornelissen ER; van der Kooij D
    Environ Sci Technol; 2009 Jul; 43(13):4890-5. PubMed ID: 19673281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms.
    Zhang J; Zhang E; Scott K; Burgess JG
    Environ Sci Technol; 2012 Mar; 46(5):2984-92. PubMed ID: 22352455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells.
    Babauta JT; Hsu L; Atci E; Kagan J; Chadwick B; Beyenal H
    ChemSusChem; 2014 Oct; 7(10):2898-906. PubMed ID: 25154833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter.
    Kumlanghan A; Liu J; Thavarungkul P; Kanatharana P; Mattiasson B
    Biosens Bioelectron; 2007 Jun; 22(12):2939-44. PubMed ID: 17223031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor.
    Adekunle A; Raghavan V; Tartakovsky B
    Biosens Bioelectron; 2019 May; 132():382-390. PubMed ID: 30903911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosensoric potential of microbial fuel cells.
    Schneider G; Kovács T; Rákhely G; Czeller M
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7001-9. PubMed ID: 27401925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Harnessing microbially generated power on the seafloor.
    Tender LM; Reimers CE; Stecher HA; Holmes DE; Bond DR; Lowy DA; Pilobello K; Fertig SJ; Lovley DR
    Nat Biotechnol; 2002 Aug; 20(8):821-5. PubMed ID: 12091916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell.
    Holmes DE; Nicoll JS; Bond DR; Lovley DR
    Appl Environ Microbiol; 2004 Oct; 70(10):6023-30. PubMed ID: 15466546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Various voltage productions by microbial fuel cells with sedimentary inocula taken from different sites in one freshwater lake.
    Song TS; Cai HY; Yan ZS; Zhao ZW; Jiang HL
    Bioresour Technol; 2012 Mar; 108():68-75. PubMed ID: 22264430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems.
    Thayanukul P; Kurisu F; Kasuga I; Furumai H
    Water Res; 2013 Jan; 47(1):225-32. PubMed ID: 23134741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms.
    Salvin P; Roos C; Robert F
    Bioresour Technol; 2012 Sep; 120():45-51. PubMed ID: 22784952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protozoan grazing reduces the current output of microbial fuel cells.
    Holmes DE; Nevin KP; Snoeyenbos-West OL; Woodard TL; Strickland JN; Lovley DR
    Bioresour Technol; 2015 Oct; 193():8-14. PubMed ID: 26115527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental electroactive consortia as reusable biosensing element for freshwater toxicity monitoring.
    Agostino V; Massaglia G; Gerosa M; Sacco A; Saracco G; Margaria V; Quaglio M
    N Biotechnol; 2020 Mar; 55():36-45. PubMed ID: 31562928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.