These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25847513)

  • 1. Assessing the drug release from nanoparticles: Overcoming the shortcomings of dialysis by using novel optical techniques and a mathematical model.
    Xie L; Beyer S; Vogel V; Wacker MG; Mäntele W
    Int J Pharm; 2015 Jul; 488(1-2):108-19. PubMed ID: 25847513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dispersion releaser technology is an effective method for testing drug release from nanosized drug carriers.
    Janas C; Mast MP; Kirsamer L; Angioni C; Gao F; Mäntele W; Dressman J; Wacker MG
    Eur J Pharm Biopharm; 2017 Jun; 115():73-83. PubMed ID: 28213179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Method for Evaluating Actual Drug Release Kinetics of Nanoparticles inside Dialysis Devices via Numerical Deconvolution.
    Zhou Y; He C; Chen K; Ni J; Cai Y; Guo X; Wu XY
    J Control Release; 2016 Dec; 243():11-20. PubMed ID: 27693750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System.
    de Andrade DF; Zuglianello C; Pohlmann AR; Guterres SS; Beck RC
    AAPS PharmSciTech; 2015 Dec; 16(6):1409-17. PubMed ID: 25986595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysical evaluation of mTHPC-loaded HSA nanoparticles as novel PDT delivery systems.
    Chen K; Wacker M; Hackbarth S; Ludwig C; Langer K; Röder B
    J Photochem Photobiol B; 2010 Dec; 101(3):340-7. PubMed ID: 20813540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different in vitro release methods used to investigate nanocarriers intended for dermal application.
    Balzus B; Colombo M; Sahle FF; Zoubari G; Staufenbiel S; Bodmeier R
    Int J Pharm; 2016 Nov; 513(1-2):247-254. PubMed ID: 27628784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is dialysis a reliable method for studying drug release from nanoparticulate systems?-A case study.
    Zambito Y; Pedreschi E; Di Colo G
    Int J Pharm; 2012 Sep; 434(1-2):28-34. PubMed ID: 22617795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting drug release kinetics from nanocarriers inside dialysis bags.
    Yu M; Yuan W; Li D; Schwendeman A; Schwendeman SP
    J Control Release; 2019 Dec; 315():23-30. PubMed ID: 31629038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method.
    Modi S; Anderson BD
    Mol Pharm; 2013 Aug; 10(8):3076-89. PubMed ID: 23758289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flurbiprofen release from Eudragit RS and RL aqueous nanosuspensions: a kinetic study by DSC and dialysis experiments.
    Castelli F; Messina C; Sarpietro MG; Pignatello R; Puglisi G
    AAPS PharmSciTech; 2002; 3(2):E9. PubMed ID: 12916946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Dialysis- and Solvatofluorochromism-Based Methods to Determine Drug Release Rates from Polymer Nanoassemblies.
    Reichel D; Bae Y
    Pharm Res; 2017 Feb; 34(2):394-407. PubMed ID: 27873146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitizer loaded HSA nanoparticles II: in vitro investigations.
    Preuss A; Chen K; Hackbarth S; Wacker M; Langer K; Röder B
    Int J Pharm; 2011 Feb; 404(1-2):308-16. PubMed ID: 21094228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General method for the quantification of drug loading and release kinetics of nanocarriers.
    Schwarzl R; Du F; Haag R; Netz RR
    Eur J Pharm Biopharm; 2017 Jul; 116():131-137. PubMed ID: 28017797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies.
    Dragicevic-Curic N; Scheglmann D; Albrecht V; Fahr A
    Colloids Surf B Biointerfaces; 2009 May; 70(2):198-206. PubMed ID: 19188048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of mTHPC-loaded solid lipid nanoparticles for photodynamic therapy.
    Navarro FP; Creusat G; Frochot C; Moussaron A; Verhille M; Vanderesse R; Thomann JS; Boisseau P; Texier I; Couffin AC; Barberi-Heyob M
    J Photochem Photobiol B; 2014 Jan; 130():161-9. PubMed ID: 24333764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitizer loaded HSA nanoparticles. I: Preparation and photophysical properties.
    Wacker M; Chen K; Preuss A; Possemeyer K; Roeder B; Langer K
    Int J Pharm; 2010 Jun; 393(1-2):253-62. PubMed ID: 20417701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel USP apparatus 4 based release testing method for dispersed systems.
    Bhardwaj U; Burgess DJ
    Int J Pharm; 2010 Mar; 388(1-2):287-94. PubMed ID: 20083176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Albumin-Assisted Method Allows Assessment of Release of Hydrophobic Drugs From Nanocarriers.
    Gil D; Frank-Kamenetskii A; Barry J; Reukov V; Xiang Y; Das A; Varma AK; Kindy MS; Banik NL; Vertegel A
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 28881095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations.
    Das S; Ng WK; Tan RB
    Nanotechnology; 2014 Mar; 25(10):105102. PubMed ID: 24531828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Mathematical Analysis of Drug Release from Lipid-Based Nanoparticles.
    Porbaha P; Ansari R; Kiafar MR; Bashiry R; Khazaei MM; Dadbakhsh A; Azadi A
    AAPS PharmSciTech; 2024 Sep; 25(7):208. PubMed ID: 39237678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.